MPL 50x50x25 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020168
GTIN/EAN: 5906301811749
Długość
50 mm [±0,1 mm]
Szerokość
50 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
468.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
90.53 kg / 888.15 N
Indukcja magnetyczna
413.25 mT / 4133 Gs
Powłoka
[NiCuNi] nikiel
159.90 ZŁ z VAT / szt. + cena za transport
130.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo pisz korzystając z
nasz formularz online
na stronie kontakt.
Właściwości a także kształt elementów magnetycznych skontrolujesz dzięki naszemu
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 50x50x25 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x50x25 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020168 |
| GTIN/EAN | 5906301811749 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 50 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 468.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 90.53 kg / 888.15 N |
| Indukcja magnetyczna ~ ? | 413.25 mT / 4133 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Niniejsze wartości są bezpośredni efekt kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 50x50x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4132 Gs
413.2 mT
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
niebezpieczny! |
| 1 mm |
3999 Gs
399.9 mT
|
84.79 kg / 186.94 lbs
84794.0 g / 831.8 N
|
niebezpieczny! |
| 2 mm |
3861 Gs
386.1 mT
|
79.04 kg / 174.25 lbs
79038.6 g / 775.4 N
|
niebezpieczny! |
| 3 mm |
3720 Gs
372.0 mT
|
73.38 kg / 161.78 lbs
73381.8 g / 719.9 N
|
niebezpieczny! |
| 5 mm |
3435 Gs
343.5 mT
|
62.56 kg / 137.93 lbs
62564.2 g / 613.8 N
|
niebezpieczny! |
| 10 mm |
2742 Gs
274.2 mT
|
39.87 kg / 87.90 lbs
39868.7 g / 391.1 N
|
niebezpieczny! |
| 15 mm |
2137 Gs
213.7 mT
|
24.21 kg / 53.37 lbs
24210.4 g / 237.5 N
|
niebezpieczny! |
| 20 mm |
1649 Gs
164.9 mT
|
14.41 kg / 31.77 lbs
14409.9 g / 141.4 N
|
niebezpieczny! |
| 30 mm |
988 Gs
98.8 mT
|
5.17 kg / 11.40 lbs
5170.9 g / 50.7 N
|
uwaga |
| 50 mm |
399 Gs
39.9 mT
|
0.85 kg / 1.86 lbs
845.8 g / 8.3 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 50x50x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| 1 mm | Stal (~0.2) |
16.96 kg / 37.39 lbs
16958.0 g / 166.4 N
|
| 2 mm | Stal (~0.2) |
15.81 kg / 34.85 lbs
15808.0 g / 155.1 N
|
| 3 mm | Stal (~0.2) |
14.68 kg / 32.36 lbs
14676.0 g / 144.0 N
|
| 5 mm | Stal (~0.2) |
12.51 kg / 27.58 lbs
12512.0 g / 122.7 N
|
| 10 mm | Stal (~0.2) |
7.97 kg / 17.58 lbs
7974.0 g / 78.2 N
|
| 15 mm | Stal (~0.2) |
4.84 kg / 10.67 lbs
4842.0 g / 47.5 N
|
| 20 mm | Stal (~0.2) |
2.88 kg / 6.35 lbs
2882.0 g / 28.3 N
|
| 30 mm | Stal (~0.2) |
1.03 kg / 2.28 lbs
1034.0 g / 10.1 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 50x50x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
27.16 kg / 59.88 lbs
27159.0 g / 266.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.05 kg / 19.96 lbs
9053.0 g / 88.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
45.27 kg / 99.79 lbs
45265.0 g / 444.0 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 50x50x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.02 kg / 6.65 lbs
3017.7 g / 29.6 N
|
| 1 mm |
|
7.54 kg / 16.63 lbs
7544.2 g / 74.0 N
|
| 2 mm |
|
15.09 kg / 33.26 lbs
15088.3 g / 148.0 N
|
| 3 mm |
|
22.63 kg / 49.90 lbs
22632.5 g / 222.0 N
|
| 5 mm |
|
37.72 kg / 83.16 lbs
37720.8 g / 370.0 N
|
| 10 mm |
|
75.44 kg / 166.32 lbs
75441.7 g / 740.1 N
|
| 11 mm |
|
82.99 kg / 182.95 lbs
82985.8 g / 814.1 N
|
| 12 mm |
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 50x50x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
OK |
| 40 °C | -2.2% |
88.54 kg / 195.19 lbs
88538.3 g / 868.6 N
|
OK |
| 60 °C | -4.4% |
86.55 kg / 190.80 lbs
86546.7 g / 849.0 N
|
|
| 80 °C | -6.6% |
84.56 kg / 186.41 lbs
84555.0 g / 829.5 N
|
|
| 100 °C | -28.8% |
64.46 kg / 142.10 lbs
64457.4 g / 632.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 50x50x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
263.15 kg / 580.14 lbs
5 403 Gs
|
39.47 kg / 87.02 lbs
39472 g / 387.2 N
|
N/A |
| 1 mm |
254.89 kg / 561.94 lbs
8 133 Gs
|
38.23 kg / 84.29 lbs
38234 g / 375.1 N
|
229.40 kg / 505.75 lbs
~0 Gs
|
| 2 mm |
246.47 kg / 543.38 lbs
7 998 Gs
|
36.97 kg / 81.51 lbs
36971 g / 362.7 N
|
221.83 kg / 489.04 lbs
~0 Gs
|
| 3 mm |
238.08 kg / 524.88 lbs
7 861 Gs
|
35.71 kg / 78.73 lbs
35713 g / 350.3 N
|
214.28 kg / 472.40 lbs
~0 Gs
|
| 5 mm |
221.48 kg / 488.27 lbs
7 582 Gs
|
33.22 kg / 73.24 lbs
33222 g / 325.9 N
|
199.33 kg / 439.45 lbs
~0 Gs
|
| 10 mm |
181.86 kg / 400.93 lbs
6 870 Gs
|
27.28 kg / 60.14 lbs
27279 g / 267.6 N
|
163.67 kg / 360.83 lbs
~0 Gs
|
| 20 mm |
115.89 kg / 255.49 lbs
5 484 Gs
|
17.38 kg / 38.32 lbs
17383 g / 170.5 N
|
104.30 kg / 229.94 lbs
~0 Gs
|
| 50 mm |
24.93 kg / 54.97 lbs
2 544 Gs
|
3.74 kg / 8.25 lbs
3740 g / 36.7 N
|
22.44 kg / 49.47 lbs
~0 Gs
|
| 60 mm |
15.03 kg / 33.14 lbs
1 975 Gs
|
2.25 kg / 4.97 lbs
2255 g / 22.1 N
|
13.53 kg / 29.82 lbs
~0 Gs
|
| 70 mm |
9.24 kg / 20.37 lbs
1 548 Gs
|
1.39 kg / 3.05 lbs
1386 g / 13.6 N
|
8.31 kg / 18.33 lbs
~0 Gs
|
| 80 mm |
5.81 kg / 12.80 lbs
1 228 Gs
|
0.87 kg / 1.92 lbs
871 g / 8.5 N
|
5.23 kg / 11.52 lbs
~0 Gs
|
| 90 mm |
3.74 kg / 8.24 lbs
985 Gs
|
0.56 kg / 1.24 lbs
560 g / 5.5 N
|
3.36 kg / 7.41 lbs
~0 Gs
|
| 100 mm |
2.46 kg / 5.42 lbs
799 Gs
|
0.37 kg / 0.81 lbs
369 g / 3.6 N
|
2.21 kg / 4.88 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 50x50x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 28.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 22.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 17.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 13.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 12.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 50x50x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
5.51 J | |
| 30 mm |
25.13 km/h
(6.98 m/s)
|
11.42 J | |
| 50 mm |
31.52 km/h
(8.76 m/s)
|
17.97 J | |
| 100 mm |
44.33 km/h
(12.31 m/s)
|
35.54 J |
Tabela 9: Odporność na korozję
MPL 50x50x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 50x50x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 105 093 Mx | 1050.9 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 50x50x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 90.53 kg | Standard |
| Woda (dno rzeki) |
103.66 kg
(+13.13 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- której grubość to min. 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Samozapłon
Proszek powstający podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Ryzyko złamań
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Niebezpieczeństwo dla rozruszników
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Alergia na nikiel
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Uwaga: zadławienie
Magnesy neodymowe nie służą do zabawy. Inhalacja kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
