MPL 50x50x25 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020168
GTIN/EAN: 5906301811749
Długość
50 mm [±0,1 mm]
Szerokość
50 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
468.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
90.53 kg / 888.15 N
Indukcja magnetyczna
413.25 mT / 4133 Gs
Powłoka
[NiCuNi] nikiel
159.90 ZŁ z VAT / szt. + cena za transport
130.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie pisz korzystając z
nasz formularz online
na stronie kontaktowej.
Masę i formę elementów magnetycznych sprawdzisz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 50x50x25 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 50x50x25 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020168 |
| GTIN/EAN | 5906301811749 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 50 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 468.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 90.53 kg / 888.15 N |
| Indukcja magnetyczna ~ ? | 413.25 mT / 4133 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe informacje są bezpośredni efekt symulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
MPL 50x50x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4132 Gs
413.2 mT
|
90.53 kg / 90530.0 g
888.1 N
|
miażdżący |
| 1 mm |
3999 Gs
399.9 mT
|
84.79 kg / 84794.0 g
831.8 N
|
miażdżący |
| 2 mm |
3861 Gs
386.1 mT
|
79.04 kg / 79038.6 g
775.4 N
|
miażdżący |
| 3 mm |
3720 Gs
372.0 mT
|
73.38 kg / 73381.8 g
719.9 N
|
miażdżący |
| 5 mm |
3435 Gs
343.5 mT
|
62.56 kg / 62564.2 g
613.8 N
|
miażdżący |
| 10 mm |
2742 Gs
274.2 mT
|
39.87 kg / 39868.7 g
391.1 N
|
miażdżący |
| 15 mm |
2137 Gs
213.7 mT
|
24.21 kg / 24210.4 g
237.5 N
|
miażdżący |
| 20 mm |
1649 Gs
164.9 mT
|
14.41 kg / 14409.9 g
141.4 N
|
miażdżący |
| 30 mm |
988 Gs
98.8 mT
|
5.17 kg / 5170.9 g
50.7 N
|
średnie ryzyko |
| 50 mm |
399 Gs
39.9 mT
|
0.85 kg / 845.8 g
8.3 N
|
niskie ryzyko |
MPL 50x50x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.11 kg / 18106.0 g
177.6 N
|
| 1 mm | Stal (~0.2) |
16.96 kg / 16958.0 g
166.4 N
|
| 2 mm | Stal (~0.2) |
15.81 kg / 15808.0 g
155.1 N
|
| 3 mm | Stal (~0.2) |
14.68 kg / 14676.0 g
144.0 N
|
| 5 mm | Stal (~0.2) |
12.51 kg / 12512.0 g
122.7 N
|
| 10 mm | Stal (~0.2) |
7.97 kg / 7974.0 g
78.2 N
|
| 15 mm | Stal (~0.2) |
4.84 kg / 4842.0 g
47.5 N
|
| 20 mm | Stal (~0.2) |
2.88 kg / 2882.0 g
28.3 N
|
| 30 mm | Stal (~0.2) |
1.03 kg / 1034.0 g
10.1 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 170.0 g
1.7 N
|
MPL 50x50x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
27.16 kg / 27159.0 g
266.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.11 kg / 18106.0 g
177.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.05 kg / 9053.0 g
88.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
45.27 kg / 45265.0 g
444.0 N
|
MPL 50x50x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
3.02 kg / 3017.7 g
29.6 N
|
| 1 mm |
|
7.54 kg / 7544.2 g
74.0 N
|
| 2 mm |
|
15.09 kg / 15088.3 g
148.0 N
|
| 5 mm |
|
37.72 kg / 37720.8 g
370.0 N
|
| 10 mm |
|
75.44 kg / 75441.7 g
740.1 N
|
MPL 50x50x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
90.53 kg / 90530.0 g
888.1 N
|
OK |
| 40 °C | -2.2% |
88.54 kg / 88538.3 g
868.6 N
|
OK |
| 60 °C | -4.4% |
86.55 kg / 86546.7 g
849.0 N
|
|
| 80 °C | -6.6% |
84.56 kg / 84555.0 g
829.5 N
|
|
| 100 °C | -28.8% |
64.46 kg / 64457.4 g
632.3 N
|
MPL 50x50x25 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
263.15 kg / 263147 g
2581.5 N
5 403 Gs
|
N/A |
| 1 mm |
254.89 kg / 254892 g
2500.5 N
8 133 Gs
|
229.40 kg / 229403 g
2250.4 N
~0 Gs
|
| 2 mm |
246.47 kg / 246473 g
2417.9 N
7 998 Gs
|
221.83 kg / 221826 g
2176.1 N
~0 Gs
|
| 3 mm |
238.08 kg / 238083 g
2335.6 N
7 861 Gs
|
214.28 kg / 214275 g
2102.0 N
~0 Gs
|
| 5 mm |
221.48 kg / 221477 g
2172.7 N
7 582 Gs
|
199.33 kg / 199329 g
1955.4 N
~0 Gs
|
| 10 mm |
181.86 kg / 181858 g
1784.0 N
6 870 Gs
|
163.67 kg / 163672 g
1605.6 N
~0 Gs
|
| 20 mm |
115.89 kg / 115888 g
1136.9 N
5 484 Gs
|
104.30 kg / 104299 g
1023.2 N
~0 Gs
|
| 50 mm |
24.93 kg / 24933 g
244.6 N
2 544 Gs
|
22.44 kg / 22440 g
220.1 N
~0 Gs
|
MPL 50x50x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 28.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 22.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 17.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 13.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 12.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
MPL 50x50x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
5.51 J | |
| 30 mm |
25.13 km/h
(6.98 m/s)
|
11.42 J | |
| 50 mm |
31.52 km/h
(8.76 m/s)
|
17.97 J | |
| 100 mm |
44.33 km/h
(12.31 m/s)
|
35.54 J |
MPL 50x50x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 50x50x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 105 093 Mx | 1050.9 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
MPL 50x50x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 90.53 kg | Standard |
| Woda (dno rzeki) |
103.66 kg
(+13.13 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z użyciem podłoża ze stali niskowęglowej, działającej jako zwora magnetyczna
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część strumienia jest tracona w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Przegrzanie magnesu
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Ogromna siła
Używaj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Bezpieczny dystans
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Chronić przed dziećmi
Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Wpływ na zdrowie
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Elektronika precyzyjna
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
