Silne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Posiadamy w sprzedaży kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do zastosowań domowych, garażu oraz modelarstwa. Zobacz produkty z szybką wysyłką.

poznaj pełną ofertę

Sprzęt dla poszukiwaczy skarbów

Rozpocznij przygodę polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz mocne linki są niezawodne w trudnych warunkach wodnych.

wybierz zestaw dla siebie

Niezawodne uchwyty z gwintem

Niezawodne rozwiązania do montażu bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Są niezastąpione przy mocowaniu lamp, czujników oraz banerów.

zobacz zastosowania przemysłowe

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 50x25x12 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020343

GTIN/EAN: 5906301811855

5.00

Długość

50 mm [±0,1 mm]

Szerokość

25 mm [±0,1 mm]

Wysokość

12 mm [±0,1 mm]

Waga

112.5 g

Kierunek magnesowania

↑ osiowy

Udźwig

37.12 kg / 364.18 N

Indukcja magnetyczna

340.43 mT / 3404 Gs

Powłoka

[NiCuNi] nikiel

45.51 z VAT / szt. + cena za transport

37.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
37.00 ZŁ
45.51 ZŁ
cena od 20 szt.
34.78 ZŁ
42.78 ZŁ
cena od 70 szt.
32.56 ZŁ
40.05 ZŁ
Nie wiesz co kupić?

Zadzwoń już teraz +48 22 499 98 98 alternatywnie napisz przez formularz na stronie kontaktowej.
Parametry a także budowę elementów magnetycznych przetestujesz u nas w kalkulatorze masy magnetycznej.

Zamów do 14:00, a wyślemy dziś!

Specyfikacja techniczna produktu - MPL 50x25x12 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 50x25x12 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020343
GTIN/EAN 5906301811855
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 50 mm [±0,1 mm]
Szerokość 25 mm [±0,1 mm]
Wysokość 12 mm [±0,1 mm]
Waga 112.5 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 37.12 kg / 364.18 N
Indukcja magnetyczna ~ ? 340.43 mT / 3404 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 50x25x12 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu - dane

Poniższe wartości stanowią bezpośredni efekt symulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 50x25x12 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3404 Gs
340.4 mT
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
miażdżący
1 mm 3234 Gs
323.4 mT
33.50 kg / 73.86 lbs
33501.5 g / 328.6 N
miażdżący
2 mm 3052 Gs
305.2 mT
29.85 kg / 65.80 lbs
29847.1 g / 292.8 N
miażdżący
3 mm 2866 Gs
286.6 mT
26.32 kg / 58.02 lbs
26317.3 g / 258.2 N
miażdżący
5 mm 2496 Gs
249.6 mT
19.97 kg / 44.02 lbs
19965.4 g / 195.9 N
miażdżący
10 mm 1702 Gs
170.2 mT
9.28 kg / 20.45 lbs
9278.2 g / 91.0 N
uwaga
15 mm 1151 Gs
115.1 mT
4.25 kg / 9.36 lbs
4246.0 g / 41.7 N
uwaga
20 mm 792 Gs
79.2 mT
2.01 kg / 4.44 lbs
2012.1 g / 19.7 N
uwaga
30 mm 404 Gs
40.4 mT
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
bezpieczny
50 mm 137 Gs
13.7 mT
0.06 kg / 0.13 lbs
60.1 g / 0.6 N
bezpieczny

Tabela 2: Równoległa siła zsuwania (pion)
MPL 50x25x12 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
1 mm Stal (~0.2) 6.70 kg / 14.77 lbs
6700.0 g / 65.7 N
2 mm Stal (~0.2) 5.97 kg / 13.16 lbs
5970.0 g / 58.6 N
3 mm Stal (~0.2) 5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
5 mm Stal (~0.2) 3.99 kg / 8.81 lbs
3994.0 g / 39.2 N
10 mm Stal (~0.2) 1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
15 mm Stal (~0.2) 0.85 kg / 1.87 lbs
850.0 g / 8.3 N
20 mm Stal (~0.2) 0.40 kg / 0.89 lbs
402.0 g / 3.9 N
30 mm Stal (~0.2) 0.10 kg / 0.23 lbs
104.0 g / 1.0 N
50 mm Stal (~0.2) 0.01 kg / 0.03 lbs
12.0 g / 0.1 N

Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 50x25x12 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
11.14 kg / 24.55 lbs
11136.0 g / 109.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
18.56 kg / 40.92 lbs
18560.0 g / 182.1 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 50x25x12 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
1 mm
13%
4.64 kg / 10.23 lbs
4640.0 g / 45.5 N
2 mm
25%
9.28 kg / 20.46 lbs
9280.0 g / 91.0 N
3 mm
38%
13.92 kg / 30.69 lbs
13920.0 g / 136.6 N
5 mm
63%
23.20 kg / 51.15 lbs
23200.0 g / 227.6 N
10 mm
100%
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
11 mm
100%
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
12 mm
100%
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N

Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 50x25x12 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
OK
40 °C -2.2% 36.30 kg / 80.04 lbs
36303.4 g / 356.1 N
OK
60 °C -4.4% 35.49 kg / 78.23 lbs
35486.7 g / 348.1 N
80 °C -6.6% 34.67 kg / 76.43 lbs
34670.1 g / 340.1 N
100 °C -28.8% 26.43 kg / 58.27 lbs
26429.4 g / 259.3 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 50x25x12 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 89.28 kg / 196.82 lbs
4 856 Gs
13.39 kg / 29.52 lbs
13392 g / 131.4 N
N/A
1 mm 84.99 kg / 187.37 lbs
6 642 Gs
12.75 kg / 28.11 lbs
12749 g / 125.1 N
76.49 kg / 168.63 lbs
~0 Gs
2 mm 80.57 kg / 177.64 lbs
6 467 Gs
12.09 kg / 26.65 lbs
12086 g / 118.6 N
72.52 kg / 159.87 lbs
~0 Gs
3 mm 76.16 kg / 167.90 lbs
6 287 Gs
11.42 kg / 25.19 lbs
11424 g / 112.1 N
68.54 kg / 151.11 lbs
~0 Gs
5 mm 67.49 kg / 148.78 lbs
5 919 Gs
10.12 kg / 22.32 lbs
10123 g / 99.3 N
60.74 kg / 133.91 lbs
~0 Gs
10 mm 48.02 kg / 105.86 lbs
4 992 Gs
7.20 kg / 15.88 lbs
7203 g / 70.7 N
43.22 kg / 95.28 lbs
~0 Gs
20 mm 22.32 kg / 49.20 lbs
3 403 Gs
3.35 kg / 7.38 lbs
3347 g / 32.8 N
20.08 kg / 44.28 lbs
~0 Gs
50 mm 2.41 kg / 5.31 lbs
1 118 Gs
0.36 kg / 0.80 lbs
361 g / 3.5 N
2.17 kg / 4.78 lbs
~0 Gs
60 mm 1.26 kg / 2.77 lbs
808 Gs
0.19 kg / 0.42 lbs
189 g / 1.9 N
1.13 kg / 2.50 lbs
~0 Gs
70 mm 0.69 kg / 1.52 lbs
598 Gs
0.10 kg / 0.23 lbs
103 g / 1.0 N
0.62 kg / 1.37 lbs
~0 Gs
80 mm 0.39 kg / 0.87 lbs
452 Gs
0.06 kg / 0.13 lbs
59 g / 0.6 N
0.35 kg / 0.78 lbs
~0 Gs
90 mm 0.23 kg / 0.52 lbs
349 Gs
0.04 kg / 0.08 lbs
35 g / 0.3 N
0.21 kg / 0.47 lbs
~0 Gs
100 mm 0.14 kg / 0.32 lbs
274 Gs
0.02 kg / 0.05 lbs
22 g / 0.2 N
0.13 kg / 0.29 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 50x25x12 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 17.5 cm
Implant słuchowy 10 Gs (1.0 mT) 14.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 11.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 8.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 8.0 cm
Karta płatnicza 400 Gs (40.0 mT) 3.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.5 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 50x25x12 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 20.99 km/h
(5.83 m/s)
1.91 J
30 mm 32.01 km/h
(8.89 m/s)
4.45 J
50 mm 41.00 km/h
(11.39 m/s)
7.30 J
100 mm 57.93 km/h
(16.09 m/s)
14.57 J

Tabela 9: Parametry powłoki (trwałość)
MPL 50x25x12 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MPL 50x25x12 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 42 945 Mx 429.5 µWb
Współczynnik Pc 0.40 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MPL 50x25x12 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 37.12 kg Standard
Woda (dno rzeki) 42.50 kg
(+5.38 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.

2. Grubość podłoża

*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.

3. Stabilność termiczna

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020343-2026
Szybki konwerter jednostek
Siła (udźwig)

Indukcja magnetyczna

Inne oferty

Model MPL 50x25x12 / N38 cechuje się płaskim kształtem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Jako sztabka magnetyczna o dużej mocy (ok. 37.12 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce. Ponadto, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Kluczem do sukcesu jest zsuniecie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 50x25x12 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 50x25x12 mm, co przy wadze 112.5 g czyni go elementem o imponującej gęstości energii. Jest to blok magnetyczny o gabarytach 50x25x12 mm i masie własnej 112.5 g, gotowy do pracy w temperaturze do 80°C. Produkt spełnia normy dla magnesów klasy N38.

Wady oraz zalety neodymowych magnesów Nd2Fe14B.

Plusy

Poza potężną energią, nasze magnesy wnoszą dodatkowe korzyści::
  • Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
  • Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
  • Dzięki powłoce (nikiel, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
  • Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.

Ograniczenia

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Analiza siły trzymania

Maksymalna siła przyciągania magnesuco ma na to wpływ?

Moc magnesu została określona dla najkorzystniejszych warunków, uwzględniającej:
  • przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
  • charakteryzującej się brakiem chropowatości
  • w warunkach bezszczelinowych (powierzchnia do powierzchni)
  • podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
  • w temperaturze pokojowej

Co wpływa na udźwig w praktyce

Podczas codziennego użytkowania, faktyczna siła trzymania jest determinowana przez wielu zmiennych, uszeregowanych od kluczowych:
  • Szczelina powietrzna (między magnesem a metalem), bowiem nawet bardzo mała przerwa (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
  • Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
  • Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
  • Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.

Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje udźwig.

Ostrzeżenia
Zagrożenie wybuchem pyłu

Pył powstający podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Implanty medyczne

Osoby z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie implantu.

Rozprysk materiału

Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.

Uszkodzenia ciała

Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.

Produkt nie dla dzieci

Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.

Świadome użytkowanie

Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.

Trwała utrata siły

Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.

Ochrona urządzeń

Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.

Zakłócenia GPS i telefonów

Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.

Alergia na nikiel

Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.

Bezpieczeństwo! Dowiedz się więcej o ryzyku w artykule: BHP magnesów NdFeB.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98