MPL 50x25x12 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020343
GTIN/EAN: 5906301811855
Długość
50 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
112.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
37.12 kg / 364.18 N
Indukcja magnetyczna
340.43 mT / 3404 Gs
Powłoka
[NiCuNi] nikiel
45.51 ZŁ z VAT / szt. + cena za transport
37.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie napisz przez
formularz
na stronie kontaktowej.
Parametry a także budowę elementów magnetycznych przetestujesz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja techniczna produktu - MPL 50x25x12 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x25x12 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020343 |
| GTIN/EAN | 5906301811855 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 112.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 37.12 kg / 364.18 N |
| Indukcja magnetyczna ~ ? | 340.43 mT / 3404 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Poniższe wartości stanowią bezpośredni efekt symulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 50x25x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3404 Gs
340.4 mT
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
miażdżący |
| 1 mm |
3234 Gs
323.4 mT
|
33.50 kg / 73.86 lbs
33501.5 g / 328.6 N
|
miażdżący |
| 2 mm |
3052 Gs
305.2 mT
|
29.85 kg / 65.80 lbs
29847.1 g / 292.8 N
|
miażdżący |
| 3 mm |
2866 Gs
286.6 mT
|
26.32 kg / 58.02 lbs
26317.3 g / 258.2 N
|
miażdżący |
| 5 mm |
2496 Gs
249.6 mT
|
19.97 kg / 44.02 lbs
19965.4 g / 195.9 N
|
miażdżący |
| 10 mm |
1702 Gs
170.2 mT
|
9.28 kg / 20.45 lbs
9278.2 g / 91.0 N
|
uwaga |
| 15 mm |
1151 Gs
115.1 mT
|
4.25 kg / 9.36 lbs
4246.0 g / 41.7 N
|
uwaga |
| 20 mm |
792 Gs
79.2 mT
|
2.01 kg / 4.44 lbs
2012.1 g / 19.7 N
|
uwaga |
| 30 mm |
404 Gs
40.4 mT
|
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
bezpieczny |
| 50 mm |
137 Gs
13.7 mT
|
0.06 kg / 0.13 lbs
60.1 g / 0.6 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 50x25x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
|
| 1 mm | Stal (~0.2) |
6.70 kg / 14.77 lbs
6700.0 g / 65.7 N
|
| 2 mm | Stal (~0.2) |
5.97 kg / 13.16 lbs
5970.0 g / 58.6 N
|
| 3 mm | Stal (~0.2) |
5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
|
| 5 mm | Stal (~0.2) |
3.99 kg / 8.81 lbs
3994.0 g / 39.2 N
|
| 10 mm | Stal (~0.2) |
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
|
| 15 mm | Stal (~0.2) |
0.85 kg / 1.87 lbs
850.0 g / 8.3 N
|
| 20 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
402.0 g / 3.9 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 50x25x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
11.14 kg / 24.55 lbs
11136.0 g / 109.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
18.56 kg / 40.92 lbs
18560.0 g / 182.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 50x25x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
|
| 1 mm |
|
4.64 kg / 10.23 lbs
4640.0 g / 45.5 N
|
| 2 mm |
|
9.28 kg / 20.46 lbs
9280.0 g / 91.0 N
|
| 3 mm |
|
13.92 kg / 30.69 lbs
13920.0 g / 136.6 N
|
| 5 mm |
|
23.20 kg / 51.15 lbs
23200.0 g / 227.6 N
|
| 10 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
| 11 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
| 12 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 50x25x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
OK |
| 40 °C | -2.2% |
36.30 kg / 80.04 lbs
36303.4 g / 356.1 N
|
OK |
| 60 °C | -4.4% |
35.49 kg / 78.23 lbs
35486.7 g / 348.1 N
|
|
| 80 °C | -6.6% |
34.67 kg / 76.43 lbs
34670.1 g / 340.1 N
|
|
| 100 °C | -28.8% |
26.43 kg / 58.27 lbs
26429.4 g / 259.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 50x25x12 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
89.28 kg / 196.82 lbs
4 856 Gs
|
13.39 kg / 29.52 lbs
13392 g / 131.4 N
|
N/A |
| 1 mm |
84.99 kg / 187.37 lbs
6 642 Gs
|
12.75 kg / 28.11 lbs
12749 g / 125.1 N
|
76.49 kg / 168.63 lbs
~0 Gs
|
| 2 mm |
80.57 kg / 177.64 lbs
6 467 Gs
|
12.09 kg / 26.65 lbs
12086 g / 118.6 N
|
72.52 kg / 159.87 lbs
~0 Gs
|
| 3 mm |
76.16 kg / 167.90 lbs
6 287 Gs
|
11.42 kg / 25.19 lbs
11424 g / 112.1 N
|
68.54 kg / 151.11 lbs
~0 Gs
|
| 5 mm |
67.49 kg / 148.78 lbs
5 919 Gs
|
10.12 kg / 22.32 lbs
10123 g / 99.3 N
|
60.74 kg / 133.91 lbs
~0 Gs
|
| 10 mm |
48.02 kg / 105.86 lbs
4 992 Gs
|
7.20 kg / 15.88 lbs
7203 g / 70.7 N
|
43.22 kg / 95.28 lbs
~0 Gs
|
| 20 mm |
22.32 kg / 49.20 lbs
3 403 Gs
|
3.35 kg / 7.38 lbs
3347 g / 32.8 N
|
20.08 kg / 44.28 lbs
~0 Gs
|
| 50 mm |
2.41 kg / 5.31 lbs
1 118 Gs
|
0.36 kg / 0.80 lbs
361 g / 3.5 N
|
2.17 kg / 4.78 lbs
~0 Gs
|
| 60 mm |
1.26 kg / 2.77 lbs
808 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 70 mm |
0.69 kg / 1.52 lbs
598 Gs
|
0.10 kg / 0.23 lbs
103 g / 1.0 N
|
0.62 kg / 1.37 lbs
~0 Gs
|
| 80 mm |
0.39 kg / 0.87 lbs
452 Gs
|
0.06 kg / 0.13 lbs
59 g / 0.6 N
|
0.35 kg / 0.78 lbs
~0 Gs
|
| 90 mm |
0.23 kg / 0.52 lbs
349 Gs
|
0.04 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.47 lbs
~0 Gs
|
| 100 mm |
0.14 kg / 0.32 lbs
274 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 50x25x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 50x25x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.99 km/h
(5.83 m/s)
|
1.91 J | |
| 30 mm |
32.01 km/h
(8.89 m/s)
|
4.45 J | |
| 50 mm |
41.00 km/h
(11.39 m/s)
|
7.30 J | |
| 100 mm |
57.93 km/h
(16.09 m/s)
|
14.57 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x25x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 50x25x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 42 945 Mx | 429.5 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 50x25x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 37.12 kg | Standard |
| Woda (dno rzeki) |
42.50 kg
(+5.38 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (nikiel, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet bardzo mała przerwa (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje udźwig.
Ostrzeżenia
Zagrożenie wybuchem pyłu
Pył powstający podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Implanty medyczne
Osoby z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie implantu.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Produkt nie dla dzieci
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Trwała utrata siły
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Ochrona urządzeń
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Alergia na nikiel
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
