MPL 50x25x12 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020343
GTIN/EAN: 5906301811855
Długość
50 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
112.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
37.12 kg / 364.18 N
Indukcja magnetyczna
340.43 mT / 3404 Gs
Powłoka
[NiCuNi] nikiel
45.51 ZŁ z VAT / szt. + cena za transport
37.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie pisz poprzez
formularz kontaktowy
na stronie kontaktowej.
Masę i kształt magnesów zweryfikujesz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 50x25x12 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x25x12 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020343 |
| GTIN/EAN | 5906301811855 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 112.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 37.12 kg / 364.18 N |
| Indukcja magnetyczna ~ ? | 340.43 mT / 3404 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Poniższe wartości są rezultat kalkulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MPL 50x25x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3404 Gs
340.4 mT
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
miażdżący |
| 1 mm |
3234 Gs
323.4 mT
|
33.50 kg / 73.86 lbs
33501.5 g / 328.6 N
|
miażdżący |
| 2 mm |
3052 Gs
305.2 mT
|
29.85 kg / 65.80 lbs
29847.1 g / 292.8 N
|
miażdżący |
| 3 mm |
2866 Gs
286.6 mT
|
26.32 kg / 58.02 lbs
26317.3 g / 258.2 N
|
miażdżący |
| 5 mm |
2496 Gs
249.6 mT
|
19.97 kg / 44.02 lbs
19965.4 g / 195.9 N
|
miażdżący |
| 10 mm |
1702 Gs
170.2 mT
|
9.28 kg / 20.45 lbs
9278.2 g / 91.0 N
|
mocny |
| 15 mm |
1151 Gs
115.1 mT
|
4.25 kg / 9.36 lbs
4246.0 g / 41.7 N
|
mocny |
| 20 mm |
792 Gs
79.2 mT
|
2.01 kg / 4.44 lbs
2012.1 g / 19.7 N
|
mocny |
| 30 mm |
404 Gs
40.4 mT
|
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
słaby uchwyt |
| 50 mm |
137 Gs
13.7 mT
|
0.06 kg / 0.13 lbs
60.1 g / 0.6 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 50x25x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
|
| 1 mm | Stal (~0.2) |
6.70 kg / 14.77 lbs
6700.0 g / 65.7 N
|
| 2 mm | Stal (~0.2) |
5.97 kg / 13.16 lbs
5970.0 g / 58.6 N
|
| 3 mm | Stal (~0.2) |
5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
|
| 5 mm | Stal (~0.2) |
3.99 kg / 8.81 lbs
3994.0 g / 39.2 N
|
| 10 mm | Stal (~0.2) |
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
|
| 15 mm | Stal (~0.2) |
0.85 kg / 1.87 lbs
850.0 g / 8.3 N
|
| 20 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
402.0 g / 3.9 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 50x25x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
11.14 kg / 24.55 lbs
11136.0 g / 109.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
18.56 kg / 40.92 lbs
18560.0 g / 182.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 50x25x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
|
| 1 mm |
|
4.64 kg / 10.23 lbs
4640.0 g / 45.5 N
|
| 2 mm |
|
9.28 kg / 20.46 lbs
9280.0 g / 91.0 N
|
| 3 mm |
|
13.92 kg / 30.69 lbs
13920.0 g / 136.6 N
|
| 5 mm |
|
23.20 kg / 51.15 lbs
23200.0 g / 227.6 N
|
| 10 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
| 11 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
| 12 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 50x25x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
OK |
| 40 °C | -2.2% |
36.30 kg / 80.04 lbs
36303.4 g / 356.1 N
|
OK |
| 60 °C | -4.4% |
35.49 kg / 78.23 lbs
35486.7 g / 348.1 N
|
|
| 80 °C | -6.6% |
34.67 kg / 76.43 lbs
34670.1 g / 340.1 N
|
|
| 100 °C | -28.8% |
26.43 kg / 58.27 lbs
26429.4 g / 259.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 50x25x12 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
89.28 kg / 196.82 lbs
4 856 Gs
|
13.39 kg / 29.52 lbs
13392 g / 131.4 N
|
N/A |
| 1 mm |
84.99 kg / 187.37 lbs
6 642 Gs
|
12.75 kg / 28.11 lbs
12749 g / 125.1 N
|
76.49 kg / 168.63 lbs
~0 Gs
|
| 2 mm |
80.57 kg / 177.64 lbs
6 467 Gs
|
12.09 kg / 26.65 lbs
12086 g / 118.6 N
|
72.52 kg / 159.87 lbs
~0 Gs
|
| 3 mm |
76.16 kg / 167.90 lbs
6 287 Gs
|
11.42 kg / 25.19 lbs
11424 g / 112.1 N
|
68.54 kg / 151.11 lbs
~0 Gs
|
| 5 mm |
67.49 kg / 148.78 lbs
5 919 Gs
|
10.12 kg / 22.32 lbs
10123 g / 99.3 N
|
60.74 kg / 133.91 lbs
~0 Gs
|
| 10 mm |
48.02 kg / 105.86 lbs
4 992 Gs
|
7.20 kg / 15.88 lbs
7203 g / 70.7 N
|
43.22 kg / 95.28 lbs
~0 Gs
|
| 20 mm |
22.32 kg / 49.20 lbs
3 403 Gs
|
3.35 kg / 7.38 lbs
3347 g / 32.8 N
|
20.08 kg / 44.28 lbs
~0 Gs
|
| 50 mm |
2.41 kg / 5.31 lbs
1 118 Gs
|
0.36 kg / 0.80 lbs
361 g / 3.5 N
|
2.17 kg / 4.78 lbs
~0 Gs
|
| 60 mm |
1.26 kg / 2.77 lbs
808 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 70 mm |
0.69 kg / 1.52 lbs
598 Gs
|
0.10 kg / 0.23 lbs
103 g / 1.0 N
|
0.62 kg / 1.37 lbs
~0 Gs
|
| 80 mm |
0.39 kg / 0.87 lbs
452 Gs
|
0.06 kg / 0.13 lbs
59 g / 0.6 N
|
0.35 kg / 0.78 lbs
~0 Gs
|
| 90 mm |
0.23 kg / 0.52 lbs
349 Gs
|
0.04 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.47 lbs
~0 Gs
|
| 100 mm |
0.14 kg / 0.32 lbs
274 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 50x25x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 50x25x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.99 km/h
(5.83 m/s)
|
1.91 J | |
| 30 mm |
32.01 km/h
(8.89 m/s)
|
4.45 J | |
| 50 mm |
41.00 km/h
(11.39 m/s)
|
7.30 J | |
| 100 mm |
57.93 km/h
(16.09 m/s)
|
14.57 J |
Tabela 9: Odporność na korozję
MPL 50x25x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 50x25x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 42 945 Mx | 429.5 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 50x25x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 37.12 kg | Standard |
| Woda (dno rzeki) |
42.50 kg
(+5.38 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z użyciem blachy ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- o przekroju wynoszącej minimum 10 mm
- o szlifowanej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Tylko dla dorosłych
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Kompas i GPS
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Temperatura pracy
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Uszkodzenia ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ryzyko uczulenia
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
