MPL 50x25x12 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020343
GTIN/EAN: 5906301811855
Długość
50 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
112.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
37.12 kg / 364.18 N
Indukcja magnetyczna
340.43 mT / 3404 Gs
Powłoka
[NiCuNi] nikiel
45.51 ZŁ z VAT / szt. + cena za transport
37.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo zostaw wiadomość przez
formularz zgłoszeniowy
przez naszą stronę.
Właściwości oraz kształt magnesu neodymowego obliczysz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne - MPL 50x25x12 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x25x12 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020343 |
| GTIN/EAN | 5906301811855 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 112.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 37.12 kg / 364.18 N |
| Indukcja magnetyczna ~ ? | 340.43 mT / 3404 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Niniejsze informacje stanowią wynik kalkulacji matematycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MPL 50x25x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3404 Gs
340.4 mT
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
krytyczny poziom |
| 1 mm |
3234 Gs
323.4 mT
|
33.50 kg / 73.86 lbs
33501.5 g / 328.6 N
|
krytyczny poziom |
| 2 mm |
3052 Gs
305.2 mT
|
29.85 kg / 65.80 lbs
29847.1 g / 292.8 N
|
krytyczny poziom |
| 3 mm |
2866 Gs
286.6 mT
|
26.32 kg / 58.02 lbs
26317.3 g / 258.2 N
|
krytyczny poziom |
| 5 mm |
2496 Gs
249.6 mT
|
19.97 kg / 44.02 lbs
19965.4 g / 195.9 N
|
krytyczny poziom |
| 10 mm |
1702 Gs
170.2 mT
|
9.28 kg / 20.45 lbs
9278.2 g / 91.0 N
|
średnie ryzyko |
| 15 mm |
1151 Gs
115.1 mT
|
4.25 kg / 9.36 lbs
4246.0 g / 41.7 N
|
średnie ryzyko |
| 20 mm |
792 Gs
79.2 mT
|
2.01 kg / 4.44 lbs
2012.1 g / 19.7 N
|
średnie ryzyko |
| 30 mm |
404 Gs
40.4 mT
|
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
niskie ryzyko |
| 50 mm |
137 Gs
13.7 mT
|
0.06 kg / 0.13 lbs
60.1 g / 0.6 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 50x25x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
|
| 1 mm | Stal (~0.2) |
6.70 kg / 14.77 lbs
6700.0 g / 65.7 N
|
| 2 mm | Stal (~0.2) |
5.97 kg / 13.16 lbs
5970.0 g / 58.6 N
|
| 3 mm | Stal (~0.2) |
5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
|
| 5 mm | Stal (~0.2) |
3.99 kg / 8.81 lbs
3994.0 g / 39.2 N
|
| 10 mm | Stal (~0.2) |
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
|
| 15 mm | Stal (~0.2) |
0.85 kg / 1.87 lbs
850.0 g / 8.3 N
|
| 20 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
402.0 g / 3.9 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 50x25x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
11.14 kg / 24.55 lbs
11136.0 g / 109.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
18.56 kg / 40.92 lbs
18560.0 g / 182.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x25x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
|
| 1 mm |
|
4.64 kg / 10.23 lbs
4640.0 g / 45.5 N
|
| 2 mm |
|
9.28 kg / 20.46 lbs
9280.0 g / 91.0 N
|
| 3 mm |
|
13.92 kg / 30.69 lbs
13920.0 g / 136.6 N
|
| 5 mm |
|
23.20 kg / 51.15 lbs
23200.0 g / 227.6 N
|
| 10 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
| 11 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
| 12 mm |
|
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 50x25x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
|
OK |
| 40 °C | -2.2% |
36.30 kg / 80.04 lbs
36303.4 g / 356.1 N
|
OK |
| 60 °C | -4.4% |
35.49 kg / 78.23 lbs
35486.7 g / 348.1 N
|
|
| 80 °C | -6.6% |
34.67 kg / 76.43 lbs
34670.1 g / 340.1 N
|
|
| 100 °C | -28.8% |
26.43 kg / 58.27 lbs
26429.4 g / 259.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 50x25x12 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
89.28 kg / 196.82 lbs
4 856 Gs
|
13.39 kg / 29.52 lbs
13392 g / 131.4 N
|
N/A |
| 1 mm |
84.99 kg / 187.37 lbs
6 642 Gs
|
12.75 kg / 28.11 lbs
12749 g / 125.1 N
|
76.49 kg / 168.63 lbs
~0 Gs
|
| 2 mm |
80.57 kg / 177.64 lbs
6 467 Gs
|
12.09 kg / 26.65 lbs
12086 g / 118.6 N
|
72.52 kg / 159.87 lbs
~0 Gs
|
| 3 mm |
76.16 kg / 167.90 lbs
6 287 Gs
|
11.42 kg / 25.19 lbs
11424 g / 112.1 N
|
68.54 kg / 151.11 lbs
~0 Gs
|
| 5 mm |
67.49 kg / 148.78 lbs
5 919 Gs
|
10.12 kg / 22.32 lbs
10123 g / 99.3 N
|
60.74 kg / 133.91 lbs
~0 Gs
|
| 10 mm |
48.02 kg / 105.86 lbs
4 992 Gs
|
7.20 kg / 15.88 lbs
7203 g / 70.7 N
|
43.22 kg / 95.28 lbs
~0 Gs
|
| 20 mm |
22.32 kg / 49.20 lbs
3 403 Gs
|
3.35 kg / 7.38 lbs
3347 g / 32.8 N
|
20.08 kg / 44.28 lbs
~0 Gs
|
| 50 mm |
2.41 kg / 5.31 lbs
1 118 Gs
|
0.36 kg / 0.80 lbs
361 g / 3.5 N
|
2.17 kg / 4.78 lbs
~0 Gs
|
| 60 mm |
1.26 kg / 2.77 lbs
808 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 70 mm |
0.69 kg / 1.52 lbs
598 Gs
|
0.10 kg / 0.23 lbs
103 g / 1.0 N
|
0.62 kg / 1.37 lbs
~0 Gs
|
| 80 mm |
0.39 kg / 0.87 lbs
452 Gs
|
0.06 kg / 0.13 lbs
59 g / 0.6 N
|
0.35 kg / 0.78 lbs
~0 Gs
|
| 90 mm |
0.23 kg / 0.52 lbs
349 Gs
|
0.04 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.47 lbs
~0 Gs
|
| 100 mm |
0.14 kg / 0.32 lbs
274 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 50x25x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 50x25x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.99 km/h
(5.83 m/s)
|
1.91 J | |
| 30 mm |
32.01 km/h
(8.89 m/s)
|
4.45 J | |
| 50 mm |
41.00 km/h
(11.39 m/s)
|
7.30 J | |
| 100 mm |
57.93 km/h
(16.09 m/s)
|
14.57 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x25x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 50x25x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 42 945 Mx | 429.5 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 50x25x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 37.12 kg | Standard |
| Woda (dno rzeki) |
42.50 kg
(+5.38 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Ogromna siła
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Uwaga na odpryski
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Uwaga medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zagrożenie dla nawigacji
Pamiętaj: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Pył jest łatwopalny
Proszek generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.
Ostrzeżenie dla alergików
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
