Magnesy neodymowe – najsilniejsze na rynku

Chcesz kupić naprawdę silne magnesy? Mamy w ofercie kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do zastosowań domowych, garażu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

sprawdź cennik i wymiary

Sprzęt dla poszukiwaczy skarbów

Odkryj pasję polegającą na poszukiwaniu skarbów pod wodą! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Solidna, antykorozyjna obudowa oraz mocne linki sprawdzą się w każdej wodzie.

wybierz swój magnes do wody

Uchwyty magnetyczne montażowe

Profesjonalne rozwiązania do montażu bezinwazyjnego. Mocowania gwintowane (M8, M10, M12) zapewniają szybkie usprawnienie pracy na magazynach. Są niezastąpione przy instalacji oświetlenia, czujników oraz banerów.

zobacz dostępne gwinty

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 50x25x12 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020343

GTIN/EAN: 5906301811855

5.00

Długość

50 mm [±0,1 mm]

Szerokość

25 mm [±0,1 mm]

Wysokość

12 mm [±0,1 mm]

Waga

112.5 g

Kierunek magnesowania

↑ osiowy

Udźwig

37.12 kg / 364.18 N

Indukcja magnetyczna

340.43 mT / 3404 Gs

Powłoka

[NiCuNi] nikiel

45.51 z VAT / szt. + cena za transport

37.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
37.00 ZŁ
45.51 ZŁ
cena od 20 szt.
34.78 ZŁ
42.78 ZŁ
cena od 70 szt.
32.56 ZŁ
40.05 ZŁ
Chcesz lepszą cenę?

Zadzwoń już teraz +48 22 499 98 98 alternatywnie pisz poprzez formularz kontaktowy na stronie kontaktowej.
Masę i kształt magnesów zweryfikujesz w naszym kalkulatorze mocy.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Właściwości fizyczne MPL 50x25x12 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 50x25x12 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020343
GTIN/EAN 5906301811855
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 50 mm [±0,1 mm]
Szerokość 25 mm [±0,1 mm]
Wysokość 12 mm [±0,1 mm]
Waga 112.5 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 37.12 kg / 364.18 N
Indukcja magnetyczna ~ ? 340.43 mT / 3404 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 50x25x12 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza techniczna magnesu - parametry techniczne

Poniższe wartości są rezultat kalkulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia dla projektantów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MPL 50x25x12 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3404 Gs
340.4 mT
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
miażdżący
1 mm 3234 Gs
323.4 mT
33.50 kg / 73.86 lbs
33501.5 g / 328.6 N
miażdżący
2 mm 3052 Gs
305.2 mT
29.85 kg / 65.80 lbs
29847.1 g / 292.8 N
miażdżący
3 mm 2866 Gs
286.6 mT
26.32 kg / 58.02 lbs
26317.3 g / 258.2 N
miażdżący
5 mm 2496 Gs
249.6 mT
19.97 kg / 44.02 lbs
19965.4 g / 195.9 N
miażdżący
10 mm 1702 Gs
170.2 mT
9.28 kg / 20.45 lbs
9278.2 g / 91.0 N
mocny
15 mm 1151 Gs
115.1 mT
4.25 kg / 9.36 lbs
4246.0 g / 41.7 N
mocny
20 mm 792 Gs
79.2 mT
2.01 kg / 4.44 lbs
2012.1 g / 19.7 N
mocny
30 mm 404 Gs
40.4 mT
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
słaby uchwyt
50 mm 137 Gs
13.7 mT
0.06 kg / 0.13 lbs
60.1 g / 0.6 N
słaby uchwyt

Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 50x25x12 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
1 mm Stal (~0.2) 6.70 kg / 14.77 lbs
6700.0 g / 65.7 N
2 mm Stal (~0.2) 5.97 kg / 13.16 lbs
5970.0 g / 58.6 N
3 mm Stal (~0.2) 5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
5 mm Stal (~0.2) 3.99 kg / 8.81 lbs
3994.0 g / 39.2 N
10 mm Stal (~0.2) 1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
15 mm Stal (~0.2) 0.85 kg / 1.87 lbs
850.0 g / 8.3 N
20 mm Stal (~0.2) 0.40 kg / 0.89 lbs
402.0 g / 3.9 N
30 mm Stal (~0.2) 0.10 kg / 0.23 lbs
104.0 g / 1.0 N
50 mm Stal (~0.2) 0.01 kg / 0.03 lbs
12.0 g / 0.1 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 50x25x12 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
11.14 kg / 24.55 lbs
11136.0 g / 109.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
7.42 kg / 16.37 lbs
7424.0 g / 72.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
18.56 kg / 40.92 lbs
18560.0 g / 182.1 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 50x25x12 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.86 kg / 4.09 lbs
1856.0 g / 18.2 N
1 mm
13%
4.64 kg / 10.23 lbs
4640.0 g / 45.5 N
2 mm
25%
9.28 kg / 20.46 lbs
9280.0 g / 91.0 N
3 mm
38%
13.92 kg / 30.69 lbs
13920.0 g / 136.6 N
5 mm
63%
23.20 kg / 51.15 lbs
23200.0 g / 227.6 N
10 mm
100%
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
11 mm
100%
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
12 mm
100%
37.12 kg / 81.84 lbs
37120.0 g / 364.1 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 50x25x12 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 37.12 kg / 81.84 lbs
37120.0 g / 364.1 N
OK
40 °C -2.2% 36.30 kg / 80.04 lbs
36303.4 g / 356.1 N
OK
60 °C -4.4% 35.49 kg / 78.23 lbs
35486.7 g / 348.1 N
80 °C -6.6% 34.67 kg / 76.43 lbs
34670.1 g / 340.1 N
100 °C -28.8% 26.43 kg / 58.27 lbs
26429.4 g / 259.3 N

Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 50x25x12 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 89.28 kg / 196.82 lbs
4 856 Gs
13.39 kg / 29.52 lbs
13392 g / 131.4 N
N/A
1 mm 84.99 kg / 187.37 lbs
6 642 Gs
12.75 kg / 28.11 lbs
12749 g / 125.1 N
76.49 kg / 168.63 lbs
~0 Gs
2 mm 80.57 kg / 177.64 lbs
6 467 Gs
12.09 kg / 26.65 lbs
12086 g / 118.6 N
72.52 kg / 159.87 lbs
~0 Gs
3 mm 76.16 kg / 167.90 lbs
6 287 Gs
11.42 kg / 25.19 lbs
11424 g / 112.1 N
68.54 kg / 151.11 lbs
~0 Gs
5 mm 67.49 kg / 148.78 lbs
5 919 Gs
10.12 kg / 22.32 lbs
10123 g / 99.3 N
60.74 kg / 133.91 lbs
~0 Gs
10 mm 48.02 kg / 105.86 lbs
4 992 Gs
7.20 kg / 15.88 lbs
7203 g / 70.7 N
43.22 kg / 95.28 lbs
~0 Gs
20 mm 22.32 kg / 49.20 lbs
3 403 Gs
3.35 kg / 7.38 lbs
3347 g / 32.8 N
20.08 kg / 44.28 lbs
~0 Gs
50 mm 2.41 kg / 5.31 lbs
1 118 Gs
0.36 kg / 0.80 lbs
361 g / 3.5 N
2.17 kg / 4.78 lbs
~0 Gs
60 mm 1.26 kg / 2.77 lbs
808 Gs
0.19 kg / 0.42 lbs
189 g / 1.9 N
1.13 kg / 2.50 lbs
~0 Gs
70 mm 0.69 kg / 1.52 lbs
598 Gs
0.10 kg / 0.23 lbs
103 g / 1.0 N
0.62 kg / 1.37 lbs
~0 Gs
80 mm 0.39 kg / 0.87 lbs
452 Gs
0.06 kg / 0.13 lbs
59 g / 0.6 N
0.35 kg / 0.78 lbs
~0 Gs
90 mm 0.23 kg / 0.52 lbs
349 Gs
0.04 kg / 0.08 lbs
35 g / 0.3 N
0.21 kg / 0.47 lbs
~0 Gs
100 mm 0.14 kg / 0.32 lbs
274 Gs
0.02 kg / 0.05 lbs
22 g / 0.2 N
0.13 kg / 0.29 lbs
~0 Gs

Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 50x25x12 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 17.5 cm
Implant słuchowy 10 Gs (1.0 mT) 14.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 11.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 8.5 cm
Pilot do auta 50 Gs (5.0 mT) 8.0 cm
Karta płatnicza 400 Gs (40.0 mT) 3.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.5 cm

Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 50x25x12 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 20.99 km/h
(5.83 m/s)
1.91 J
30 mm 32.01 km/h
(8.89 m/s)
4.45 J
50 mm 41.00 km/h
(11.39 m/s)
7.30 J
100 mm 57.93 km/h
(16.09 m/s)
14.57 J

Tabela 9: Odporność na korozję
MPL 50x25x12 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MPL 50x25x12 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 42 945 Mx 429.5 µWb
Współczynnik Pc 0.40 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MPL 50x25x12 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 37.12 kg Standard
Woda (dno rzeki) 42.50 kg
(+5.38 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.

3. Spadek mocy w temperaturze

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020343-2025
Przelicznik magnesów
Siła oderwania

Indukcja magnetyczna

Zobacz też inne propozycje

Produkt ten to ekstremalnie mocny magnes w kształcie płytki wykonany z materiału NdFeB, co przy wymiarach 50x25x12 mm i wadze 112.5 g gwarantuje najwyższą jakość połączenia. Ten prostopadłościan o sile 364.18 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Dodatkowo, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Rozdzielanie magnesów blokowych wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 50x25x12 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Magnesy płytkowe MPL 50x25x12 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak separatory magnetyczne oraz silniki liniowe. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Klienci często wybierają ten model do organizacji warsztatu na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Standardowo model MPL 50x25x12 / N38 jest magnesowany przez grubość (wymiar 12 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (50x25 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 50x25x12 mm, co przy wadze 112.5 g czyni go elementem o wysokiej gęstości energii. Jest to blok magnetyczny o gabarytach 50x25x12 mm i masie własnej 112.5 g, gotowy do pracy w temperaturze do 80°C. Produkt spełnia normy dla magnesów klasy N38.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Plusy

Oprócz niezwykłą energią, nasze magnesy posiadają wiele innych atutów::
  • Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
  • Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
  • Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
  • Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
  • Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Ograniczenia

Mimo zalet, posiadają też wady:
  • Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Analiza siły trzymania

Optymalny udźwig magnesu neodymowegoco się na to składa?

Moc magnesu to rezultat pomiaru dla najkorzystniejszych warunków, uwzględniającej:
  • z użyciem blachy ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
  • o przekroju wynoszącej minimum 10 mm
  • o szlifowanej powierzchni kontaktu
  • bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
  • podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
  • przy temperaturze otoczenia ok. 20 stopni Celsjusza

Co wpływa na udźwig w praktyce

W rzeczywistych zastosowaniach, realna moc zależy od szeregu czynników, które przedstawiamy od najbardziej istotnych:
  • Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
  • Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
  • Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
  • Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
  • Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.

Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża nośność.

Środki ostrożności podczas pracy z magnesami neodymowymi
Tylko dla dorosłych

Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.

Kompas i GPS

Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.

Nie wierć w magnesach

Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.

Magnesy są kruche

Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.

Rozruszniki serca

Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.

Karty i dyski

Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).

Temperatura pracy

Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.

Ostrożność wymagana

Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.

Uszkodzenia ciała

Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.

Ryzyko uczulenia

Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.

Bezpieczeństwo! Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98