MPL 15x10x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020388
GTIN/EAN: 5906301811879
Długość
15 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.57 kg / 15.45 N
Indukcja magnetyczna
180.53 mT / 1805 Gs
Powłoka
[NiCuNi] nikiel
1.316 ZŁ z VAT / szt. + cena za transport
1.070 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie zostaw wiadomość przez
nasz formularz online
przez naszą stronę.
Moc a także budowę magnesów neodymowych przetestujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane techniczne - MPL 15x10x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 15x10x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020388 |
| GTIN/EAN | 5906301811879 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.57 kg / 15.45 N |
| Indukcja magnetyczna ~ ? | 180.53 mT / 1805 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Poniższe wartości stanowią bezpośredni efekt symulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MPL 15x10x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1805 Gs
180.5 mT
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
słaby uchwyt |
| 1 mm |
1628 Gs
162.8 mT
|
1.28 kg / 2.82 lbs
1278.3 g / 12.5 N
|
słaby uchwyt |
| 2 mm |
1394 Gs
139.4 mT
|
0.94 kg / 2.06 lbs
936.3 g / 9.2 N
|
słaby uchwyt |
| 3 mm |
1152 Gs
115.2 mT
|
0.64 kg / 1.41 lbs
639.9 g / 6.3 N
|
słaby uchwyt |
| 5 mm |
751 Gs
75.1 mT
|
0.27 kg / 0.60 lbs
271.5 g / 2.7 N
|
słaby uchwyt |
| 10 mm |
262 Gs
26.2 mT
|
0.03 kg / 0.07 lbs
33.1 g / 0.3 N
|
słaby uchwyt |
| 15 mm |
110 Gs
11.0 mT
|
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 15x10x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 0.56 lbs
256.0 g / 2.5 N
|
| 2 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 15x10x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.47 kg / 1.04 lbs
471.0 g / 4.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 15x10x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
|
| 1 mm |
|
0.39 kg / 0.87 lbs
392.5 g / 3.9 N
|
| 2 mm |
|
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
|
| 3 mm |
|
1.18 kg / 2.60 lbs
1177.5 g / 11.6 N
|
| 5 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 10 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 11 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 12 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 15x10x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
OK |
| 40 °C | -2.2% |
1.54 kg / 3.39 lbs
1535.5 g / 15.1 N
|
OK |
| 60 °C | -4.4% |
1.50 kg / 3.31 lbs
1500.9 g / 14.7 N
|
|
| 80 °C | -6.6% |
1.47 kg / 3.23 lbs
1466.4 g / 14.4 N
|
|
| 100 °C | -28.8% |
1.12 kg / 2.46 lbs
1117.8 g / 11.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 15x10x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.01 kg / 6.64 lbs
3 196 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
N/A |
| 1 mm |
2.76 kg / 6.09 lbs
3 456 Gs
|
0.41 kg / 0.91 lbs
414 g / 4.1 N
|
2.49 kg / 5.48 lbs
~0 Gs
|
| 2 mm |
2.45 kg / 5.41 lbs
3 257 Gs
|
0.37 kg / 0.81 lbs
368 g / 3.6 N
|
2.21 kg / 4.87 lbs
~0 Gs
|
| 3 mm |
2.12 kg / 4.68 lbs
3 029 Gs
|
0.32 kg / 0.70 lbs
318 g / 3.1 N
|
1.91 kg / 4.21 lbs
~0 Gs
|
| 5 mm |
1.49 kg / 3.30 lbs
2 543 Gs
|
0.22 kg / 0.49 lbs
224 g / 2.2 N
|
1.35 kg / 2.97 lbs
~0 Gs
|
| 10 mm |
0.52 kg / 1.15 lbs
1 501 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
| 20 mm |
0.06 kg / 0.14 lbs
524 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
37 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 15x10x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 15x10x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.99 km/h
(7.50 m/s)
|
0.06 J | |
| 30 mm |
46.15 km/h
(12.82 m/s)
|
0.18 J | |
| 50 mm |
59.57 km/h
(16.55 m/s)
|
0.31 J | |
| 100 mm |
84.24 km/h
(23.40 m/s)
|
0.62 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 15x10x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 15x10x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 194 Mx | 31.9 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 15x10x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.57 kg | Standard |
| Woda (dno rzeki) |
1.80 kg
(+0.23 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju wynoszącej minimum 10 mm
- o wypolerowanej powierzchni styku
- przy bezpośrednim styku (brak farby)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Co wpływa na udźwig w praktyce
- Szczelina – obecność jakiejkolwiek warstwy (farba, brud, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość stali – zbyt cienka blacha nie przyjmuje całego pola, przez co część strumienia marnuje się na drugą stronę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla zmniejszają przenikalność magnetyczną i udźwig.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Ostrzeżenie dla alergików
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Łamliwość magnesów
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Ryzyko pożaru
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Przegrzanie magnesu
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Produkt nie dla dzieci
Magnesy neodymowe nie służą do zabawy. Połknięcie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Implanty medyczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Wpływ na smartfony
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Ochrona dłoni
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
