MPL 30x20x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020286
GTIN/EAN: 5906301811848
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.30 kg / 61.84 N
Indukcja magnetyczna
180.57 mT / 1806 Gs
Powłoka
[NiCuNi] nikiel
10.23 ZŁ z VAT / szt. + cena za transport
8.32 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub pisz korzystając z
formularz kontaktowy
przez naszą stronę.
Parametry oraz formę elementów magnetycznych obliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna produktu - MPL 30x20x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x20x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020286 |
| GTIN/EAN | 5906301811848 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.30 kg / 61.84 N |
| Indukcja magnetyczna ~ ? | 180.57 mT / 1806 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Przedstawione wartości stanowią wynik symulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 30x20x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1805 Gs
180.5 mT
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
mocny |
| 1 mm |
1728 Gs
172.8 mT
|
5.77 kg / 12.72 lbs
5771.5 g / 56.6 N
|
mocny |
| 2 mm |
1628 Gs
162.8 mT
|
5.13 kg / 11.30 lbs
5125.7 g / 50.3 N
|
mocny |
| 3 mm |
1515 Gs
151.5 mT
|
4.43 kg / 9.78 lbs
4434.6 g / 43.5 N
|
mocny |
| 5 mm |
1271 Gs
127.1 mT
|
3.12 kg / 6.89 lbs
3124.3 g / 30.6 N
|
mocny |
| 10 mm |
751 Gs
75.1 mT
|
1.09 kg / 2.40 lbs
1088.7 g / 10.7 N
|
bezpieczny |
| 15 mm |
435 Gs
43.5 mT
|
0.37 kg / 0.81 lbs
366.3 g / 3.6 N
|
bezpieczny |
| 20 mm |
262 Gs
26.2 mT
|
0.13 kg / 0.29 lbs
132.6 g / 1.3 N
|
bezpieczny |
| 30 mm |
110 Gs
11.0 mT
|
0.02 kg / 0.05 lbs
23.2 g / 0.2 N
|
bezpieczny |
| 50 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 30x20x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.26 kg / 2.78 lbs
1260.0 g / 12.4 N
|
| 1 mm | Stal (~0.2) |
1.15 kg / 2.54 lbs
1154.0 g / 11.3 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 lbs
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 5 mm | Stal (~0.2) |
0.62 kg / 1.38 lbs
624.0 g / 6.1 N
|
| 10 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
218.0 g / 2.1 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 30x20x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.26 kg / 2.78 lbs
1260.0 g / 12.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.15 kg / 6.94 lbs
3150.0 g / 30.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 30x20x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 1 mm |
|
1.58 kg / 3.47 lbs
1575.0 g / 15.5 N
|
| 2 mm |
|
3.15 kg / 6.94 lbs
3150.0 g / 30.9 N
|
| 3 mm |
|
4.73 kg / 10.42 lbs
4725.0 g / 46.4 N
|
| 5 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
| 10 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
| 11 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
| 12 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 30x20x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
OK |
| 40 °C | -2.2% |
6.16 kg / 13.58 lbs
6161.4 g / 60.4 N
|
OK |
| 60 °C | -4.4% |
6.02 kg / 13.28 lbs
6022.8 g / 59.1 N
|
|
| 80 °C | -6.6% |
5.88 kg / 12.97 lbs
5884.2 g / 57.7 N
|
|
| 100 °C | -28.8% |
4.49 kg / 9.89 lbs
4485.6 g / 44.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 30x20x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.06 kg / 26.58 lbs
3 198 Gs
|
1.81 kg / 3.99 lbs
1809 g / 17.7 N
|
N/A |
| 1 mm |
11.59 kg / 25.55 lbs
3 540 Gs
|
1.74 kg / 3.83 lbs
1739 g / 17.1 N
|
10.43 kg / 23.00 lbs
~0 Gs
|
| 2 mm |
11.05 kg / 24.35 lbs
3 456 Gs
|
1.66 kg / 3.65 lbs
1657 g / 16.3 N
|
9.94 kg / 21.92 lbs
~0 Gs
|
| 3 mm |
10.45 kg / 23.03 lbs
3 361 Gs
|
1.57 kg / 3.45 lbs
1567 g / 15.4 N
|
9.40 kg / 20.73 lbs
~0 Gs
|
| 5 mm |
9.15 kg / 20.18 lbs
3 146 Gs
|
1.37 kg / 3.03 lbs
1373 g / 13.5 N
|
8.24 kg / 18.16 lbs
~0 Gs
|
| 10 mm |
5.98 kg / 13.18 lbs
2 543 Gs
|
0.90 kg / 1.98 lbs
897 g / 8.8 N
|
5.38 kg / 11.86 lbs
~0 Gs
|
| 20 mm |
2.08 kg / 4.59 lbs
1 501 Gs
|
0.31 kg / 0.69 lbs
313 g / 3.1 N
|
1.88 kg / 4.13 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.22 lbs
331 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.10 lbs
219 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.05 lbs
151 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
108 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
80 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
60 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 30x20x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 30x20x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
0.30 J | |
| 30 mm |
32.75 km/h
(9.10 m/s)
|
0.75 J | |
| 50 mm |
42.20 km/h
(11.72 m/s)
|
1.24 J | |
| 100 mm |
59.66 km/h
(16.57 m/s)
|
2.47 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 30x20x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 30x20x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 775 Mx | 127.8 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x20x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.30 kg | Standard |
| Woda (dno rzeki) |
7.21 kg
(+0.91 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - filtr magnetyczny
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni styku
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym wektorze siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda stal nie przyjmuje całego pola, przez co część strumienia ucieka na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Łatwopalność
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Uwaga medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Tylko dla dorosłych
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Potężne pole
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Karty i dyski
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Kruchy spiek
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Uczulenie na powłokę
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Wrażliwość na ciepło
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
