MPL 50x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020473
GTIN/EAN: 5906301811930
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
37.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.69 kg / 124.48 N
Indukcja magnetyczna
197.73 mT / 1977 Gs
Powłoka
[NiCuNi] nikiel
14.56 ZŁ z VAT / szt. + cena za transport
11.84 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie napisz przez
nasz formularz online
w sekcji kontakt.
Masę i kształt magnesu neodymowego przetestujesz u nas w
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MPL 50x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 50x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020473 |
| GTIN/EAN | 5906301811930 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 37.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.69 kg / 124.48 N |
| Indukcja magnetyczna ~ ? | 197.73 mT / 1977 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu neodymowego - dane
Niniejsze informacje stanowią bezpośredni efekt analizy fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
MPL 50x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1977 Gs
197.7 mT
|
12.69 kg / 12690.0 g
124.5 N
|
miażdżący |
| 1 mm |
1885 Gs
188.5 mT
|
11.53 kg / 11530.3 g
113.1 N
|
miażdżący |
| 2 mm |
1772 Gs
177.2 mT
|
10.20 kg / 10199.9 g
100.1 N
|
miażdżący |
| 3 mm |
1649 Gs
164.9 mT
|
8.83 kg / 8831.3 g
86.6 N
|
średnie ryzyko |
| 5 mm |
1395 Gs
139.5 mT
|
6.32 kg / 6320.3 g
62.0 N
|
średnie ryzyko |
| 10 mm |
870 Gs
87.0 mT
|
2.46 kg / 2459.4 g
24.1 N
|
średnie ryzyko |
| 15 mm |
549 Gs
54.9 mT
|
0.98 kg / 976.9 g
9.6 N
|
niskie ryzyko |
| 20 mm |
359 Gs
35.9 mT
|
0.42 kg / 418.9 g
4.1 N
|
niskie ryzyko |
| 30 mm |
172 Gs
17.2 mT
|
0.10 kg / 95.7 g
0.9 N
|
niskie ryzyko |
| 50 mm |
54 Gs
5.4 mT
|
0.01 kg / 9.5 g
0.1 N
|
niskie ryzyko |
MPL 50x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.54 kg / 2538.0 g
24.9 N
|
| 1 mm | Stal (~0.2) |
2.31 kg / 2306.0 g
22.6 N
|
| 2 mm | Stal (~0.2) |
2.04 kg / 2040.0 g
20.0 N
|
| 3 mm | Stal (~0.2) |
1.77 kg / 1766.0 g
17.3 N
|
| 5 mm | Stal (~0.2) |
1.26 kg / 1264.0 g
12.4 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 492.0 g
4.8 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 196.0 g
1.9 N
|
| 20 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MPL 50x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.81 kg / 3807.0 g
37.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.54 kg / 2538.0 g
24.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.27 kg / 1269.0 g
12.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.35 kg / 6345.0 g
62.2 N
|
MPL 50x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 634.5 g
6.2 N
|
| 1 mm |
|
1.59 kg / 1586.3 g
15.6 N
|
| 2 mm |
|
3.17 kg / 3172.5 g
31.1 N
|
| 5 mm |
|
7.93 kg / 7931.2 g
77.8 N
|
| 10 mm |
|
12.69 kg / 12690.0 g
124.5 N
|
MPL 50x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.69 kg / 12690.0 g
124.5 N
|
OK |
| 40 °C | -2.2% |
12.41 kg / 12410.8 g
121.8 N
|
OK |
| 60 °C | -4.4% |
12.13 kg / 12131.6 g
119.0 N
|
|
| 80 °C | -6.6% |
11.85 kg / 11852.5 g
116.3 N
|
|
| 100 °C | -28.8% |
9.04 kg / 9035.3 g
88.6 N
|
MPL 50x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
24.10 kg / 24097 g
236.4 N
3 371 Gs
|
N/A |
| 1 mm |
23.06 kg / 23059 g
226.2 N
3 868 Gs
|
20.75 kg / 20753 g
203.6 N
~0 Gs
|
| 2 mm |
21.89 kg / 21894 g
214.8 N
3 769 Gs
|
19.71 kg / 19705 g
193.3 N
~0 Gs
|
| 3 mm |
20.65 kg / 20654 g
202.6 N
3 661 Gs
|
18.59 kg / 18589 g
182.4 N
~0 Gs
|
| 5 mm |
18.07 kg / 18065 g
177.2 N
3 424 Gs
|
16.26 kg / 16259 g
159.5 N
~0 Gs
|
| 10 mm |
12.00 kg / 12002 g
117.7 N
2 790 Gs
|
10.80 kg / 10801 g
106.0 N
~0 Gs
|
| 20 mm |
4.67 kg / 4670 g
45.8 N
1 741 Gs
|
4.20 kg / 4203 g
41.2 N
~0 Gs
|
| 50 mm |
0.37 kg / 368 g
3.6 N
488 Gs
|
0.33 kg / 331 g
3.2 N
~0 Gs
|
MPL 50x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 50x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.68 km/h
(5.74 m/s)
|
0.62 J | |
| 30 mm |
32.28 km/h
(8.97 m/s)
|
1.51 J | |
| 50 mm |
41.50 km/h
(11.53 m/s)
|
2.49 J | |
| 100 mm |
58.67 km/h
(16.30 m/s)
|
4.98 J |
MPL 50x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 50x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 792 Mx | 207.9 µWb |
| Współczynnik Pc | 0.21 | Niski (Płaski) |
MPL 50x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.69 kg | Standard |
| Woda (dno rzeki) |
14.53 kg
(+1.84 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.21
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Temperatura pracy
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Ochrona oczu
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Nie dawać dzieciom
Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Siła zgniatająca
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Ostrzeżenie dla sercowców
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
