MPL 50x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020473
GTIN/EAN: 5906301811930
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
37.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.69 kg / 124.48 N
Indukcja magnetyczna
197.73 mT / 1977 Gs
Powłoka
[NiCuNi] nikiel
14.56 ZŁ z VAT / szt. + cena za transport
11.84 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
nasz formularz online
przez naszą stronę.
Udźwig a także kształt magnesów neodymowych zweryfikujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja produktu - MPL 50x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020473 |
| GTIN/EAN | 5906301811930 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 37.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.69 kg / 124.48 N |
| Indukcja magnetyczna ~ ? | 197.73 mT / 1977 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione dane są wynik analizy fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 50x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1977 Gs
197.7 mT
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
niebezpieczny! |
| 1 mm |
1885 Gs
188.5 mT
|
11.53 kg / 25.42 lbs
11530.3 g / 113.1 N
|
niebezpieczny! |
| 2 mm |
1772 Gs
177.2 mT
|
10.20 kg / 22.49 lbs
10199.9 g / 100.1 N
|
niebezpieczny! |
| 3 mm |
1649 Gs
164.9 mT
|
8.83 kg / 19.47 lbs
8831.3 g / 86.6 N
|
mocny |
| 5 mm |
1395 Gs
139.5 mT
|
6.32 kg / 13.93 lbs
6320.3 g / 62.0 N
|
mocny |
| 10 mm |
870 Gs
87.0 mT
|
2.46 kg / 5.42 lbs
2459.4 g / 24.1 N
|
mocny |
| 15 mm |
549 Gs
54.9 mT
|
0.98 kg / 2.15 lbs
976.9 g / 9.6 N
|
słaby uchwyt |
| 20 mm |
359 Gs
35.9 mT
|
0.42 kg / 0.92 lbs
418.9 g / 4.1 N
|
słaby uchwyt |
| 30 mm |
172 Gs
17.2 mT
|
0.10 kg / 0.21 lbs
95.7 g / 0.9 N
|
słaby uchwyt |
| 50 mm |
54 Gs
5.4 mT
|
0.01 kg / 0.02 lbs
9.5 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 50x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.54 kg / 5.60 lbs
2538.0 g / 24.9 N
|
| 1 mm | Stal (~0.2) |
2.31 kg / 5.08 lbs
2306.0 g / 22.6 N
|
| 2 mm | Stal (~0.2) |
2.04 kg / 4.50 lbs
2040.0 g / 20.0 N
|
| 3 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 5 mm | Stal (~0.2) |
1.26 kg / 2.79 lbs
1264.0 g / 12.4 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
492.0 g / 4.8 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 0.43 lbs
196.0 g / 1.9 N
|
| 20 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 50x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.81 kg / 8.39 lbs
3807.0 g / 37.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.54 kg / 5.60 lbs
2538.0 g / 24.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.27 kg / 2.80 lbs
1269.0 g / 12.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.35 kg / 13.99 lbs
6345.0 g / 62.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 1.40 lbs
634.5 g / 6.2 N
|
| 1 mm |
|
1.59 kg / 3.50 lbs
1586.3 g / 15.6 N
|
| 2 mm |
|
3.17 kg / 6.99 lbs
3172.5 g / 31.1 N
|
| 3 mm |
|
4.76 kg / 10.49 lbs
4758.8 g / 46.7 N
|
| 5 mm |
|
7.93 kg / 17.49 lbs
7931.2 g / 77.8 N
|
| 10 mm |
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
| 11 mm |
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
| 12 mm |
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 50x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
OK |
| 40 °C | -2.2% |
12.41 kg / 27.36 lbs
12410.8 g / 121.8 N
|
OK |
| 60 °C | -4.4% |
12.13 kg / 26.75 lbs
12131.6 g / 119.0 N
|
|
| 80 °C | -6.6% |
11.85 kg / 26.13 lbs
11852.5 g / 116.3 N
|
|
| 100 °C | -28.8% |
9.04 kg / 19.92 lbs
9035.3 g / 88.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 50x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
24.10 kg / 53.12 lbs
3 371 Gs
|
3.61 kg / 7.97 lbs
3614 g / 35.5 N
|
N/A |
| 1 mm |
23.06 kg / 50.84 lbs
3 868 Gs
|
3.46 kg / 7.63 lbs
3459 g / 33.9 N
|
20.75 kg / 45.75 lbs
~0 Gs
|
| 2 mm |
21.89 kg / 48.27 lbs
3 769 Gs
|
3.28 kg / 7.24 lbs
3284 g / 32.2 N
|
19.71 kg / 43.44 lbs
~0 Gs
|
| 3 mm |
20.65 kg / 45.53 lbs
3 661 Gs
|
3.10 kg / 6.83 lbs
3098 g / 30.4 N
|
18.59 kg / 40.98 lbs
~0 Gs
|
| 5 mm |
18.07 kg / 39.83 lbs
3 424 Gs
|
2.71 kg / 5.97 lbs
2710 g / 26.6 N
|
16.26 kg / 35.84 lbs
~0 Gs
|
| 10 mm |
12.00 kg / 26.46 lbs
2 790 Gs
|
1.80 kg / 3.97 lbs
1800 g / 17.7 N
|
10.80 kg / 23.81 lbs
~0 Gs
|
| 20 mm |
4.67 kg / 10.30 lbs
1 741 Gs
|
0.70 kg / 1.54 lbs
701 g / 6.9 N
|
4.20 kg / 9.27 lbs
~0 Gs
|
| 50 mm |
0.37 kg / 0.81 lbs
488 Gs
|
0.06 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.73 lbs
~0 Gs
|
| 60 mm |
0.18 kg / 0.40 lbs
343 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
| 70 mm |
0.10 kg / 0.21 lbs
248 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.12 lbs
184 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.07 lbs
140 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.04 lbs
108 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 50x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 50x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.68 km/h
(5.74 m/s)
|
0.62 J | |
| 30 mm |
32.28 km/h
(8.97 m/s)
|
1.51 J | |
| 50 mm |
41.50 km/h
(11.53 m/s)
|
2.49 J | |
| 100 mm |
58.67 km/h
(16.30 m/s)
|
4.98 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 50x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 792 Mx | 207.9 µWb |
| Współczynnik Pc | 0.21 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 50x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.69 kg | Standard |
| Woda (dno rzeki) |
14.53 kg
(+1.84 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.21
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi jedynie ~1% (wg testów).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, Au, Ag) mają nowoczesny, metaliczny wygląd.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której grubość wynosi ok. 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (brak powłok)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z impetem, często szybciej niż zdążysz zareagować.
Ochrona oczu
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Zagrożenie dla najmłodszych
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Nie wierć w magnesach
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Implanty kardiologiczne
Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Smartfony i tablety
Intensywne promieniowanie magnetyczne destabilizuje działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
