MPL 50x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020473
GTIN/EAN: 5906301811930
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
37.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.69 kg / 124.48 N
Indukcja magnetyczna
197.73 mT / 1977 Gs
Powłoka
[NiCuNi] nikiel
14.56 ZŁ z VAT / szt. + cena za transport
11.84 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo zostaw wiadomość korzystając z
formularz
przez naszą stronę.
Udźwig a także budowę elementów magnetycznych wyliczysz w naszym
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry produktu - MPL 50x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020473 |
| GTIN/EAN | 5906301811930 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 37.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.69 kg / 124.48 N |
| Indukcja magnetyczna ~ ? | 197.73 mT / 1977 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Niniejsze wartości stanowią bezpośredni efekt kalkulacji matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 50x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1977 Gs
197.7 mT
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
niebezpieczny! |
| 1 mm |
1885 Gs
188.5 mT
|
11.53 kg / 25.42 lbs
11530.3 g / 113.1 N
|
niebezpieczny! |
| 2 mm |
1772 Gs
177.2 mT
|
10.20 kg / 22.49 lbs
10199.9 g / 100.1 N
|
niebezpieczny! |
| 3 mm |
1649 Gs
164.9 mT
|
8.83 kg / 19.47 lbs
8831.3 g / 86.6 N
|
uwaga |
| 5 mm |
1395 Gs
139.5 mT
|
6.32 kg / 13.93 lbs
6320.3 g / 62.0 N
|
uwaga |
| 10 mm |
870 Gs
87.0 mT
|
2.46 kg / 5.42 lbs
2459.4 g / 24.1 N
|
uwaga |
| 15 mm |
549 Gs
54.9 mT
|
0.98 kg / 2.15 lbs
976.9 g / 9.6 N
|
słaby uchwyt |
| 20 mm |
359 Gs
35.9 mT
|
0.42 kg / 0.92 lbs
418.9 g / 4.1 N
|
słaby uchwyt |
| 30 mm |
172 Gs
17.2 mT
|
0.10 kg / 0.21 lbs
95.7 g / 0.9 N
|
słaby uchwyt |
| 50 mm |
54 Gs
5.4 mT
|
0.01 kg / 0.02 lbs
9.5 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 50x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.54 kg / 5.60 lbs
2538.0 g / 24.9 N
|
| 1 mm | Stal (~0.2) |
2.31 kg / 5.08 lbs
2306.0 g / 22.6 N
|
| 2 mm | Stal (~0.2) |
2.04 kg / 4.50 lbs
2040.0 g / 20.0 N
|
| 3 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 5 mm | Stal (~0.2) |
1.26 kg / 2.79 lbs
1264.0 g / 12.4 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
492.0 g / 4.8 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 0.43 lbs
196.0 g / 1.9 N
|
| 20 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 50x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.81 kg / 8.39 lbs
3807.0 g / 37.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.54 kg / 5.60 lbs
2538.0 g / 24.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.27 kg / 2.80 lbs
1269.0 g / 12.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.35 kg / 13.99 lbs
6345.0 g / 62.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 50x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 1.40 lbs
634.5 g / 6.2 N
|
| 1 mm |
|
1.59 kg / 3.50 lbs
1586.3 g / 15.6 N
|
| 2 mm |
|
3.17 kg / 6.99 lbs
3172.5 g / 31.1 N
|
| 3 mm |
|
4.76 kg / 10.49 lbs
4758.8 g / 46.7 N
|
| 5 mm |
|
7.93 kg / 17.49 lbs
7931.2 g / 77.8 N
|
| 10 mm |
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
| 11 mm |
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
| 12 mm |
|
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 50x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.69 kg / 27.98 lbs
12690.0 g / 124.5 N
|
OK |
| 40 °C | -2.2% |
12.41 kg / 27.36 lbs
12410.8 g / 121.8 N
|
OK |
| 60 °C | -4.4% |
12.13 kg / 26.75 lbs
12131.6 g / 119.0 N
|
|
| 80 °C | -6.6% |
11.85 kg / 26.13 lbs
11852.5 g / 116.3 N
|
|
| 100 °C | -28.8% |
9.04 kg / 19.92 lbs
9035.3 g / 88.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 50x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
24.10 kg / 53.12 lbs
3 371 Gs
|
3.61 kg / 7.97 lbs
3614 g / 35.5 N
|
N/A |
| 1 mm |
23.06 kg / 50.84 lbs
3 868 Gs
|
3.46 kg / 7.63 lbs
3459 g / 33.9 N
|
20.75 kg / 45.75 lbs
~0 Gs
|
| 2 mm |
21.89 kg / 48.27 lbs
3 769 Gs
|
3.28 kg / 7.24 lbs
3284 g / 32.2 N
|
19.71 kg / 43.44 lbs
~0 Gs
|
| 3 mm |
20.65 kg / 45.53 lbs
3 661 Gs
|
3.10 kg / 6.83 lbs
3098 g / 30.4 N
|
18.59 kg / 40.98 lbs
~0 Gs
|
| 5 mm |
18.07 kg / 39.83 lbs
3 424 Gs
|
2.71 kg / 5.97 lbs
2710 g / 26.6 N
|
16.26 kg / 35.84 lbs
~0 Gs
|
| 10 mm |
12.00 kg / 26.46 lbs
2 790 Gs
|
1.80 kg / 3.97 lbs
1800 g / 17.7 N
|
10.80 kg / 23.81 lbs
~0 Gs
|
| 20 mm |
4.67 kg / 10.30 lbs
1 741 Gs
|
0.70 kg / 1.54 lbs
701 g / 6.9 N
|
4.20 kg / 9.27 lbs
~0 Gs
|
| 50 mm |
0.37 kg / 0.81 lbs
488 Gs
|
0.06 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.73 lbs
~0 Gs
|
| 60 mm |
0.18 kg / 0.40 lbs
343 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
| 70 mm |
0.10 kg / 0.21 lbs
248 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.12 lbs
184 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.07 lbs
140 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.04 lbs
108 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 50x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 50x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.68 km/h
(5.74 m/s)
|
0.62 J | |
| 30 mm |
32.28 km/h
(8.97 m/s)
|
1.51 J | |
| 50 mm |
41.50 km/h
(11.53 m/s)
|
2.49 J | |
| 100 mm |
58.67 km/h
(16.30 m/s)
|
4.98 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 50x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 792 Mx | 207.9 µWb |
| Współczynnik Pc | 0.21 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 50x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.69 kg | Standard |
| Woda (dno rzeki) |
14.53 kg
(+1.84 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.21
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Unikaj kontaktu w przypadku alergii
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Wrażliwość na ciepło
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko połknięcia
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Samozapłon
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Moc przyciągania
Używaj magnesy z rozwagą. Ich ogromna siła może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Kruchy spiek
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Uszkodzenia czujników
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
