MPL 50x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020473
GTIN/EAN: 5906301811930
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
37.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.69 kg / 124.48 N
Indukcja magnetyczna
197.73 mT / 1977 Gs
Powłoka
[NiCuNi] nikiel
14.56 ZŁ z VAT / szt. + cena za transport
11.84 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo napisz poprzez
nasz formularz online
na naszej stronie.
Siłę oraz formę magnesów neodymowych skontrolujesz w naszym
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry techniczne - MPL 50x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020473 |
| GTIN/EAN | 5906301811930 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 37.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.69 kg / 124.48 N |
| Indukcja magnetyczna ~ ? | 197.73 mT / 1977 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Poniższe dane stanowią wynik analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 50x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1977 Gs
197.7 mT
|
12.69 kg / 12690.0 g
124.5 N
|
niebezpieczny! |
| 1 mm |
1885 Gs
188.5 mT
|
11.53 kg / 11530.3 g
113.1 N
|
niebezpieczny! |
| 2 mm |
1772 Gs
177.2 mT
|
10.20 kg / 10199.9 g
100.1 N
|
niebezpieczny! |
| 3 mm |
1649 Gs
164.9 mT
|
8.83 kg / 8831.3 g
86.6 N
|
średnie ryzyko |
| 5 mm |
1395 Gs
139.5 mT
|
6.32 kg / 6320.3 g
62.0 N
|
średnie ryzyko |
| 10 mm |
870 Gs
87.0 mT
|
2.46 kg / 2459.4 g
24.1 N
|
średnie ryzyko |
| 15 mm |
549 Gs
54.9 mT
|
0.98 kg / 976.9 g
9.6 N
|
niskie ryzyko |
| 20 mm |
359 Gs
35.9 mT
|
0.42 kg / 418.9 g
4.1 N
|
niskie ryzyko |
| 30 mm |
172 Gs
17.2 mT
|
0.10 kg / 95.7 g
0.9 N
|
niskie ryzyko |
| 50 mm |
54 Gs
5.4 mT
|
0.01 kg / 9.5 g
0.1 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 50x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.54 kg / 2538.0 g
24.9 N
|
| 1 mm | Stal (~0.2) |
2.31 kg / 2306.0 g
22.6 N
|
| 2 mm | Stal (~0.2) |
2.04 kg / 2040.0 g
20.0 N
|
| 3 mm | Stal (~0.2) |
1.77 kg / 1766.0 g
17.3 N
|
| 5 mm | Stal (~0.2) |
1.26 kg / 1264.0 g
12.4 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 492.0 g
4.8 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 196.0 g
1.9 N
|
| 20 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 50x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.81 kg / 3807.0 g
37.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.54 kg / 2538.0 g
24.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.27 kg / 1269.0 g
12.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.35 kg / 6345.0 g
62.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 50x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 634.5 g
6.2 N
|
| 1 mm |
|
1.59 kg / 1586.3 g
15.6 N
|
| 2 mm |
|
3.17 kg / 3172.5 g
31.1 N
|
| 5 mm |
|
7.93 kg / 7931.2 g
77.8 N
|
| 10 mm |
|
12.69 kg / 12690.0 g
124.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 50x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.69 kg / 12690.0 g
124.5 N
|
OK |
| 40 °C | -2.2% |
12.41 kg / 12410.8 g
121.8 N
|
OK |
| 60 °C | -4.4% |
12.13 kg / 12131.6 g
119.0 N
|
|
| 80 °C | -6.6% |
11.85 kg / 11852.5 g
116.3 N
|
|
| 100 °C | -28.8% |
9.04 kg / 9035.3 g
88.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 50x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
24.10 kg / 24097 g
236.4 N
3 371 Gs
|
N/A |
| 1 mm |
23.06 kg / 23059 g
226.2 N
3 868 Gs
|
20.75 kg / 20753 g
203.6 N
~0 Gs
|
| 2 mm |
21.89 kg / 21894 g
214.8 N
3 769 Gs
|
19.71 kg / 19705 g
193.3 N
~0 Gs
|
| 3 mm |
20.65 kg / 20654 g
202.6 N
3 661 Gs
|
18.59 kg / 18589 g
182.4 N
~0 Gs
|
| 5 mm |
18.07 kg / 18065 g
177.2 N
3 424 Gs
|
16.26 kg / 16259 g
159.5 N
~0 Gs
|
| 10 mm |
12.00 kg / 12002 g
117.7 N
2 790 Gs
|
10.80 kg / 10801 g
106.0 N
~0 Gs
|
| 20 mm |
4.67 kg / 4670 g
45.8 N
1 741 Gs
|
4.20 kg / 4203 g
41.2 N
~0 Gs
|
| 50 mm |
0.37 kg / 368 g
3.6 N
488 Gs
|
0.33 kg / 331 g
3.2 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 50x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 50x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.68 km/h
(5.74 m/s)
|
0.62 J | |
| 30 mm |
32.28 km/h
(8.97 m/s)
|
1.51 J | |
| 50 mm |
41.50 km/h
(11.53 m/s)
|
2.49 J | |
| 100 mm |
58.67 km/h
(16.30 m/s)
|
4.98 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 50x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 792 Mx | 207.9 µWb |
| Współczynnik Pc | 0.21 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 50x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.69 kg | Standard |
| Woda (dno rzeki) |
14.53 kg
(+1.84 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.21
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o grubości przynajmniej 10 mm
- z powierzchnią idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Dystans (pomiędzy magnesem a metalem), bowiem nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek działania siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Ostrożność wymagana
Używaj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Zagrożenie fizyczne
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Ochrona urządzeń
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
