MPL 30x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020448
GTIN/EAN: 5906301811923
Długość
30 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
5.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.03 kg / 68.96 N
Indukcja magnetyczna
446.27 mT / 4463 Gs
Powłoka
[NiCuNi] nikiel
4.15 ZŁ z VAT / szt. + cena za transport
3.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie napisz poprzez
formularz kontaktowy
na naszej stronie.
Udźwig a także formę magnesu neodymowego przetestujesz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MPL 30x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020448 |
| GTIN/EAN | 5906301811923 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 5.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.03 kg / 68.96 N |
| Indukcja magnetyczna ~ ? | 446.27 mT / 4463 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione wartości są bezpośredni efekt analizy inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 30x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4458 Gs
445.8 mT
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
mocny |
| 1 mm |
3235 Gs
323.5 mT
|
3.70 kg / 8.16 lbs
3702.2 g / 36.3 N
|
mocny |
| 2 mm |
2271 Gs
227.1 mT
|
1.82 kg / 4.02 lbs
1825.0 g / 17.9 N
|
bezpieczny |
| 3 mm |
1628 Gs
162.8 mT
|
0.94 kg / 2.07 lbs
937.0 g / 9.2 N
|
bezpieczny |
| 5 mm |
927 Gs
92.7 mT
|
0.30 kg / 0.67 lbs
304.2 g / 3.0 N
|
bezpieczny |
| 10 mm |
342 Gs
34.2 mT
|
0.04 kg / 0.09 lbs
41.4 g / 0.4 N
|
bezpieczny |
| 15 mm |
166 Gs
16.6 mT
|
0.01 kg / 0.02 lbs
9.7 g / 0.1 N
|
bezpieczny |
| 20 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 30x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.41 kg / 3.10 lbs
1406.0 g / 13.8 N
|
| 1 mm | Stal (~0.2) |
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| 3 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 30x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.11 kg / 4.65 lbs
2109.0 g / 20.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.41 kg / 3.10 lbs
1406.0 g / 13.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.70 kg / 1.55 lbs
703.0 g / 6.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.52 kg / 7.75 lbs
3515.0 g / 34.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 30x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.70 kg / 1.55 lbs
703.0 g / 6.9 N
|
| 1 mm |
|
1.76 kg / 3.87 lbs
1757.5 g / 17.2 N
|
| 2 mm |
|
3.52 kg / 7.75 lbs
3515.0 g / 34.5 N
|
| 3 mm |
|
5.27 kg / 11.62 lbs
5272.5 g / 51.7 N
|
| 5 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 10 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 11 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 12 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 30x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
OK |
| 40 °C | -2.2% |
6.88 kg / 15.16 lbs
6875.3 g / 67.4 N
|
OK |
| 60 °C | -4.4% |
6.72 kg / 14.82 lbs
6720.7 g / 65.9 N
|
|
| 80 °C | -6.6% |
6.57 kg / 14.48 lbs
6566.0 g / 64.4 N
|
|
| 100 °C | -28.8% |
5.01 kg / 11.03 lbs
5005.4 g / 49.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 30x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.38 kg / 40.52 lbs
5 383 Gs
|
2.76 kg / 6.08 lbs
2757 g / 27.0 N
|
N/A |
| 1 mm |
13.60 kg / 29.99 lbs
7 670 Gs
|
2.04 kg / 4.50 lbs
2040 g / 20.0 N
|
12.24 kg / 26.99 lbs
~0 Gs
|
| 2 mm |
9.68 kg / 21.34 lbs
6 470 Gs
|
1.45 kg / 3.20 lbs
1452 g / 14.2 N
|
8.71 kg / 19.20 lbs
~0 Gs
|
| 3 mm |
6.79 kg / 14.97 lbs
5 419 Gs
|
1.02 kg / 2.25 lbs
1018 g / 10.0 N
|
6.11 kg / 13.47 lbs
~0 Gs
|
| 5 mm |
3.39 kg / 7.48 lbs
3 830 Gs
|
0.51 kg / 1.12 lbs
509 g / 5.0 N
|
3.05 kg / 6.73 lbs
~0 Gs
|
| 10 mm |
0.80 kg / 1.75 lbs
1 855 Gs
|
0.12 kg / 0.26 lbs
119 g / 1.2 N
|
0.72 kg / 1.58 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.24 lbs
684 Gs
|
0.02 kg / 0.04 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
111 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 30x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 30x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
35.77 km/h
(9.94 m/s)
|
0.28 J | |
| 30 mm |
61.73 km/h
(17.15 m/s)
|
0.83 J | |
| 50 mm |
79.69 km/h
(22.14 m/s)
|
1.38 J | |
| 100 mm |
112.70 km/h
(31.30 m/s)
|
2.76 J |
Tabela 9: Odporność na korozję
MPL 30x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 30x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 700 Mx | 57.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 30x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.03 kg | Standard |
| Woda (dno rzeki) |
8.05 kg
(+1.02 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) zyskują nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Dystans (między magnesem a blachą), gdyż nawet mikroskopijna odległość (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Niszczenie danych
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ostrzeżenie dla alergików
Niektóre osoby ma nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Nie dawać dzieciom
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Magnesy są kruche
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Łatwopalność
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
