MPL 50x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020166
GTIN/EAN: 5906301811725
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
150 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.18 kg / 413.81 N
Indukcja magnetyczna
478.99 mT / 4790 Gs
Powłoka
[NiCuNi] nikiel
47.32 ZŁ z VAT / szt. + cena za transport
38.47 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub skontaktuj się za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Masę a także formę magnesów sprawdzisz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020166 |
| GTIN/EAN | 5906301811725 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 150 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.18 kg / 413.81 N |
| Indukcja magnetyczna ~ ? | 478.99 mT / 4790 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Niniejsze wartości stanowią rezultat kalkulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 50x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4789 Gs
478.9 mT
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
miażdżący |
| 1 mm |
4452 Gs
445.2 mT
|
36.46 kg / 80.38 lbs
36461.5 g / 357.7 N
|
miażdżący |
| 2 mm |
4114 Gs
411.4 mT
|
31.13 kg / 68.62 lbs
31126.5 g / 305.4 N
|
miażdżący |
| 3 mm |
3784 Gs
378.4 mT
|
26.34 kg / 58.06 lbs
26336.3 g / 258.4 N
|
miażdżący |
| 5 mm |
3173 Gs
317.3 mT
|
18.52 kg / 40.84 lbs
18523.4 g / 181.7 N
|
miażdżący |
| 10 mm |
2022 Gs
202.2 mT
|
7.52 kg / 16.59 lbs
7522.9 g / 73.8 N
|
mocny |
| 15 mm |
1324 Gs
132.4 mT
|
3.22 kg / 7.10 lbs
3222.6 g / 31.6 N
|
mocny |
| 20 mm |
899 Gs
89.9 mT
|
1.49 kg / 3.28 lbs
1487.5 g / 14.6 N
|
bezpieczny |
| 30 mm |
458 Gs
45.8 mT
|
0.39 kg / 0.85 lbs
385.8 g / 3.8 N
|
bezpieczny |
| 50 mm |
159 Gs
15.9 mT
|
0.05 kg / 0.10 lbs
46.4 g / 0.5 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 50x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.44 kg / 18.60 lbs
8436.0 g / 82.8 N
|
| 1 mm | Stal (~0.2) |
7.29 kg / 16.08 lbs
7292.0 g / 71.5 N
|
| 2 mm | Stal (~0.2) |
6.23 kg / 13.73 lbs
6226.0 g / 61.1 N
|
| 3 mm | Stal (~0.2) |
5.27 kg / 11.61 lbs
5268.0 g / 51.7 N
|
| 5 mm | Stal (~0.2) |
3.70 kg / 8.17 lbs
3704.0 g / 36.3 N
|
| 10 mm | Stal (~0.2) |
1.50 kg / 3.32 lbs
1504.0 g / 14.8 N
|
| 15 mm | Stal (~0.2) |
0.64 kg / 1.42 lbs
644.0 g / 6.3 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 50x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.65 kg / 27.90 lbs
12654.0 g / 124.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.44 kg / 18.60 lbs
8436.0 g / 82.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.22 kg / 9.30 lbs
4218.0 g / 41.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.09 kg / 46.50 lbs
21090.0 g / 206.9 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 50x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.11 kg / 4.65 lbs
2109.0 g / 20.7 N
|
| 1 mm |
|
5.27 kg / 11.62 lbs
5272.5 g / 51.7 N
|
| 2 mm |
|
10.55 kg / 23.25 lbs
10545.0 g / 103.4 N
|
| 3 mm |
|
15.82 kg / 34.87 lbs
15817.5 g / 155.2 N
|
| 5 mm |
|
26.36 kg / 58.12 lbs
26362.5 g / 258.6 N
|
| 10 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
| 11 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
| 12 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 50x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
OK |
| 40 °C | -2.2% |
41.25 kg / 90.95 lbs
41252.0 g / 404.7 N
|
OK |
| 60 °C | -4.4% |
40.32 kg / 88.90 lbs
40324.1 g / 395.6 N
|
OK |
| 80 °C | -6.6% |
39.40 kg / 86.85 lbs
39396.1 g / 386.5 N
|
|
| 100 °C | -28.8% |
30.03 kg / 66.21 lbs
30032.2 g / 294.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 50x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
141.37 kg / 311.66 lbs
5 687 Gs
|
21.21 kg / 46.75 lbs
21205 g / 208.0 N
|
N/A |
| 1 mm |
131.73 kg / 290.41 lbs
9 245 Gs
|
19.76 kg / 43.56 lbs
19759 g / 193.8 N
|
118.55 kg / 261.37 lbs
~0 Gs
|
| 2 mm |
122.20 kg / 269.41 lbs
8 904 Gs
|
18.33 kg / 40.41 lbs
18330 g / 179.8 N
|
109.98 kg / 242.47 lbs
~0 Gs
|
| 3 mm |
113.05 kg / 249.23 lbs
8 564 Gs
|
16.96 kg / 37.38 lbs
16957 g / 166.4 N
|
101.74 kg / 224.31 lbs
~0 Gs
|
| 5 mm |
96.05 kg / 211.76 lbs
7 894 Gs
|
14.41 kg / 31.76 lbs
14408 g / 141.3 N
|
86.45 kg / 190.58 lbs
~0 Gs
|
| 10 mm |
62.08 kg / 136.87 lbs
6 347 Gs
|
9.31 kg / 20.53 lbs
9312 g / 91.4 N
|
55.87 kg / 123.18 lbs
~0 Gs
|
| 20 mm |
25.21 kg / 55.59 lbs
4 045 Gs
|
3.78 kg / 8.34 lbs
3782 g / 37.1 N
|
22.69 kg / 50.03 lbs
~0 Gs
|
| 50 mm |
2.46 kg / 5.43 lbs
1 264 Gs
|
0.37 kg / 0.81 lbs
370 g / 3.6 N
|
2.22 kg / 4.89 lbs
~0 Gs
|
| 60 mm |
1.29 kg / 2.85 lbs
916 Gs
|
0.19 kg / 0.43 lbs
194 g / 1.9 N
|
1.16 kg / 2.57 lbs
~0 Gs
|
| 70 mm |
0.71 kg / 1.58 lbs
681 Gs
|
0.11 kg / 0.24 lbs
107 g / 1.1 N
|
0.64 kg / 1.42 lbs
~0 Gs
|
| 80 mm |
0.41 kg / 0.91 lbs
518 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
| 90 mm |
0.25 kg / 0.55 lbs
402 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 100 mm |
0.16 kg / 0.34 lbs
318 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 50x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 50x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.70 km/h
(5.20 m/s)
|
2.02 J | |
| 30 mm |
29.46 km/h
(8.18 m/s)
|
5.02 J | |
| 50 mm |
37.84 km/h
(10.51 m/s)
|
8.29 J | |
| 100 mm |
53.48 km/h
(14.86 m/s)
|
16.55 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 50x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 46 654 Mx | 466.5 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 50x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.18 kg | Standard |
| Woda (dno rzeki) |
48.30 kg
(+6.12 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) mają estetyczny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- z użyciem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- o wypolerowanej powierzchni styku
- przy bezpośrednim styku (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość stali – za chuda blacha nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Świadome użytkowanie
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Uwaga: zadławienie
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem dzieci i zwierząt.
Nie zbliżaj do komputera
Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Uczulenie na powłokę
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
