MPL 50x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020166
GTIN/EAN: 5906301811725
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
150 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.18 kg / 413.81 N
Indukcja magnetyczna
478.99 mT / 4790 Gs
Powłoka
[NiCuNi] nikiel
47.32 ZŁ z VAT / szt. + cena za transport
38.47 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie daj znać przez
formularz
przez naszą stronę.
Parametry i wygląd magnesu zobaczysz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MPL 50x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020166 |
| GTIN/EAN | 5906301811725 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 150 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.18 kg / 413.81 N |
| Indukcja magnetyczna ~ ? | 478.99 mT / 4790 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Przedstawione wartości stanowią wynik kalkulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MPL 50x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4789 Gs
478.9 mT
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
krytyczny poziom |
| 1 mm |
4452 Gs
445.2 mT
|
36.46 kg / 80.38 lbs
36461.5 g / 357.7 N
|
krytyczny poziom |
| 2 mm |
4114 Gs
411.4 mT
|
31.13 kg / 68.62 lbs
31126.5 g / 305.4 N
|
krytyczny poziom |
| 3 mm |
3784 Gs
378.4 mT
|
26.34 kg / 58.06 lbs
26336.3 g / 258.4 N
|
krytyczny poziom |
| 5 mm |
3173 Gs
317.3 mT
|
18.52 kg / 40.84 lbs
18523.4 g / 181.7 N
|
krytyczny poziom |
| 10 mm |
2022 Gs
202.2 mT
|
7.52 kg / 16.59 lbs
7522.9 g / 73.8 N
|
mocny |
| 15 mm |
1324 Gs
132.4 mT
|
3.22 kg / 7.10 lbs
3222.6 g / 31.6 N
|
mocny |
| 20 mm |
899 Gs
89.9 mT
|
1.49 kg / 3.28 lbs
1487.5 g / 14.6 N
|
niskie ryzyko |
| 30 mm |
458 Gs
45.8 mT
|
0.39 kg / 0.85 lbs
385.8 g / 3.8 N
|
niskie ryzyko |
| 50 mm |
159 Gs
15.9 mT
|
0.05 kg / 0.10 lbs
46.4 g / 0.5 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 50x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.44 kg / 18.60 lbs
8436.0 g / 82.8 N
|
| 1 mm | Stal (~0.2) |
7.29 kg / 16.08 lbs
7292.0 g / 71.5 N
|
| 2 mm | Stal (~0.2) |
6.23 kg / 13.73 lbs
6226.0 g / 61.1 N
|
| 3 mm | Stal (~0.2) |
5.27 kg / 11.61 lbs
5268.0 g / 51.7 N
|
| 5 mm | Stal (~0.2) |
3.70 kg / 8.17 lbs
3704.0 g / 36.3 N
|
| 10 mm | Stal (~0.2) |
1.50 kg / 3.32 lbs
1504.0 g / 14.8 N
|
| 15 mm | Stal (~0.2) |
0.64 kg / 1.42 lbs
644.0 g / 6.3 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 50x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.65 kg / 27.90 lbs
12654.0 g / 124.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.44 kg / 18.60 lbs
8436.0 g / 82.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.22 kg / 9.30 lbs
4218.0 g / 41.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.09 kg / 46.50 lbs
21090.0 g / 206.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 50x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.11 kg / 4.65 lbs
2109.0 g / 20.7 N
|
| 1 mm |
|
5.27 kg / 11.62 lbs
5272.5 g / 51.7 N
|
| 2 mm |
|
10.55 kg / 23.25 lbs
10545.0 g / 103.4 N
|
| 3 mm |
|
15.82 kg / 34.87 lbs
15817.5 g / 155.2 N
|
| 5 mm |
|
26.36 kg / 58.12 lbs
26362.5 g / 258.6 N
|
| 10 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
| 11 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
| 12 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 50x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
OK |
| 40 °C | -2.2% |
41.25 kg / 90.95 lbs
41252.0 g / 404.7 N
|
OK |
| 60 °C | -4.4% |
40.32 kg / 88.90 lbs
40324.1 g / 395.6 N
|
OK |
| 80 °C | -6.6% |
39.40 kg / 86.85 lbs
39396.1 g / 386.5 N
|
|
| 100 °C | -28.8% |
30.03 kg / 66.21 lbs
30032.2 g / 294.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 50x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
141.37 kg / 311.66 lbs
5 687 Gs
|
21.21 kg / 46.75 lbs
21205 g / 208.0 N
|
N/A |
| 1 mm |
131.73 kg / 290.41 lbs
9 245 Gs
|
19.76 kg / 43.56 lbs
19759 g / 193.8 N
|
118.55 kg / 261.37 lbs
~0 Gs
|
| 2 mm |
122.20 kg / 269.41 lbs
8 904 Gs
|
18.33 kg / 40.41 lbs
18330 g / 179.8 N
|
109.98 kg / 242.47 lbs
~0 Gs
|
| 3 mm |
113.05 kg / 249.23 lbs
8 564 Gs
|
16.96 kg / 37.38 lbs
16957 g / 166.4 N
|
101.74 kg / 224.31 lbs
~0 Gs
|
| 5 mm |
96.05 kg / 211.76 lbs
7 894 Gs
|
14.41 kg / 31.76 lbs
14408 g / 141.3 N
|
86.45 kg / 190.58 lbs
~0 Gs
|
| 10 mm |
62.08 kg / 136.87 lbs
6 347 Gs
|
9.31 kg / 20.53 lbs
9312 g / 91.4 N
|
55.87 kg / 123.18 lbs
~0 Gs
|
| 20 mm |
25.21 kg / 55.59 lbs
4 045 Gs
|
3.78 kg / 8.34 lbs
3782 g / 37.1 N
|
22.69 kg / 50.03 lbs
~0 Gs
|
| 50 mm |
2.46 kg / 5.43 lbs
1 264 Gs
|
0.37 kg / 0.81 lbs
370 g / 3.6 N
|
2.22 kg / 4.89 lbs
~0 Gs
|
| 60 mm |
1.29 kg / 2.85 lbs
916 Gs
|
0.19 kg / 0.43 lbs
194 g / 1.9 N
|
1.16 kg / 2.57 lbs
~0 Gs
|
| 70 mm |
0.71 kg / 1.58 lbs
681 Gs
|
0.11 kg / 0.24 lbs
107 g / 1.1 N
|
0.64 kg / 1.42 lbs
~0 Gs
|
| 80 mm |
0.41 kg / 0.91 lbs
518 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
| 90 mm |
0.25 kg / 0.55 lbs
402 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 100 mm |
0.16 kg / 0.34 lbs
318 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 50x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 50x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.70 km/h
(5.20 m/s)
|
2.02 J | |
| 30 mm |
29.46 km/h
(8.18 m/s)
|
5.02 J | |
| 50 mm |
37.84 km/h
(10.51 m/s)
|
8.29 J | |
| 100 mm |
53.48 km/h
(14.86 m/s)
|
16.55 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 50x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 46 654 Mx | 466.5 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 50x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.18 kg | Standard |
| Woda (dno rzeki) |
48.30 kg
(+6.12 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Dystans – obecność jakiejkolwiek warstwy (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig mierzono używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Ostrzeżenia
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Dla uczulonych
Część populacji ma alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować silną reakcję alergiczną. Zalecamy noszenie rękawic bezlateksowych.
Chronić przed dziećmi
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Zagrożenie fizyczne
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Nie zbliżaj do komputera
Nie przykładaj magnesów do dokumentów, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
