MPL 42x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020163
GTIN/EAN: 5906301811695
Długość
42 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
31.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.06 kg / 108.46 N
Indukcja magnetyczna
203.37 mT / 2034 Gs
Powłoka
[NiCuNi] nikiel
15.62 ZŁ z VAT / szt. + cena za transport
12.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo napisz przez
formularz
w sekcji kontakt.
Moc oraz budowę magnesów neodymowych zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MPL 42x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 42x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020163 |
| GTIN/EAN | 5906301811695 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 42 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 31.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.06 kg / 108.46 N |
| Indukcja magnetyczna ~ ? | 203.37 mT / 2034 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze dane są bezpośredni efekt symulacji fizycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MPL 42x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2033 Gs
203.3 mT
|
11.06 kg / 11060.0 g
108.5 N
|
miażdżący |
| 1 mm |
1938 Gs
193.8 mT
|
10.05 kg / 10049.3 g
98.6 N
|
miażdżący |
| 2 mm |
1823 Gs
182.3 mT
|
8.89 kg / 8888.2 g
87.2 N
|
uwaga |
| 3 mm |
1696 Gs
169.6 mT
|
7.69 kg / 7691.7 g
75.5 N
|
uwaga |
| 5 mm |
1433 Gs
143.3 mT
|
5.49 kg / 5490.3 g
53.9 N
|
uwaga |
| 10 mm |
885 Gs
88.5 mT
|
2.09 kg / 2093.5 g
20.5 N
|
uwaga |
| 15 mm |
547 Gs
54.7 mT
|
0.80 kg / 799.6 g
7.8 N
|
bezpieczny |
| 20 mm |
350 Gs
35.0 mT
|
0.33 kg / 327.0 g
3.2 N
|
bezpieczny |
| 30 mm |
160 Gs
16.0 mT
|
0.07 kg / 68.5 g
0.7 N
|
bezpieczny |
| 50 mm |
48 Gs
4.8 mT
|
0.01 kg / 6.2 g
0.1 N
|
bezpieczny |
MPL 42x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.21 kg / 2212.0 g
21.7 N
|
| 1 mm | Stal (~0.2) |
2.01 kg / 2010.0 g
19.7 N
|
| 2 mm | Stal (~0.2) |
1.78 kg / 1778.0 g
17.4 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 1538.0 g
15.1 N
|
| 5 mm | Stal (~0.2) |
1.10 kg / 1098.0 g
10.8 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 418.0 g
4.1 N
|
| 15 mm | Stal (~0.2) |
0.16 kg / 160.0 g
1.6 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MPL 42x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.32 kg / 3318.0 g
32.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.21 kg / 2212.0 g
21.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.11 kg / 1106.0 g
10.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.53 kg / 5530.0 g
54.2 N
|
MPL 42x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.55 kg / 553.0 g
5.4 N
|
| 1 mm |
|
1.38 kg / 1382.5 g
13.6 N
|
| 2 mm |
|
2.77 kg / 2765.0 g
27.1 N
|
| 5 mm |
|
6.91 kg / 6912.5 g
67.8 N
|
| 10 mm |
|
11.06 kg / 11060.0 g
108.5 N
|
MPL 42x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.06 kg / 11060.0 g
108.5 N
|
OK |
| 40 °C | -2.2% |
10.82 kg / 10816.7 g
106.1 N
|
OK |
| 60 °C | -4.4% |
10.57 kg / 10573.4 g
103.7 N
|
|
| 80 °C | -6.6% |
10.33 kg / 10330.0 g
101.3 N
|
|
| 100 °C | -28.8% |
7.87 kg / 7874.7 g
77.3 N
|
MPL 42x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
21.41 kg / 21412 g
210.1 N
3 465 Gs
|
N/A |
| 1 mm |
20.49 kg / 20491 g
201.0 N
3 978 Gs
|
18.44 kg / 18442 g
180.9 N
~0 Gs
|
| 2 mm |
19.46 kg / 19455 g
190.9 N
3 877 Gs
|
17.51 kg / 17510 g
171.8 N
~0 Gs
|
| 3 mm |
18.35 kg / 18352 g
180.0 N
3 765 Gs
|
16.52 kg / 16517 g
162.0 N
~0 Gs
|
| 5 mm |
16.05 kg / 16047 g
157.4 N
3 521 Gs
|
14.44 kg / 14442 g
141.7 N
~0 Gs
|
| 10 mm |
10.63 kg / 10629 g
104.3 N
2 865 Gs
|
9.57 kg / 9566 g
93.8 N
~0 Gs
|
| 20 mm |
4.05 kg / 4053 g
39.8 N
1 769 Gs
|
3.65 kg / 3648 g
35.8 N
~0 Gs
|
| 50 mm |
0.28 kg / 279 g
2.7 N
465 Gs
|
0.25 kg / 252 g
2.5 N
~0 Gs
|
MPL 42x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 7.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 42x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.01 km/h
(5.84 m/s)
|
0.54 J | |
| 30 mm |
32.86 km/h
(9.13 m/s)
|
1.31 J | |
| 50 mm |
42.27 km/h
(11.74 m/s)
|
2.17 J | |
| 100 mm |
59.76 km/h
(16.60 m/s)
|
4.34 J |
MPL 42x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 42x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 614 Mx | 186.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
MPL 42x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.06 kg | Standard |
| Woda (dno rzeki) |
12.66 kg
(+1.60 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi jedynie ~1% (wg testów).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- z płaszczyzną oczyszczoną i gładką
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt przyłożenia siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Domieszki stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża udźwig.
Podatność na pękanie
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Ochrona urządzeń
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Ryzyko uczulenia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Maksymalna temperatura
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Uszkodzenia ciała
Silne magnesy mogą połamać palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa silne magnesy.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Moc przyciągania
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Zakaz zabawy
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Ryzyko pożaru
Proszek powstający podczas cięcia magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
