MPL 30x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020142
GTIN/EAN: 5906301811480
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.27 kg / 238.07 N
Indukcja magnetyczna
512.53 mT / 5125 Gs
Powłoka
[NiCuNi] nikiel
43.22 ZŁ z VAT / szt. + cena za transport
35.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
lub skontaktuj się poprzez
formularz
na stronie kontakt.
Właściwości i kształt magnesów wyliczysz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MPL 30x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020142 |
| GTIN/EAN | 5906301811480 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.27 kg / 238.07 N |
| Indukcja magnetyczna ~ ? | 512.53 mT / 5125 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Niniejsze wartości są wynik analizy fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 30x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5124 Gs
512.4 mT
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
miażdżący |
| 1 mm |
4730 Gs
473.0 mT
|
20.68 kg / 45.60 lbs
20685.0 g / 202.9 N
|
miażdżący |
| 2 mm |
4335 Gs
433.5 mT
|
17.37 kg / 38.30 lbs
17370.7 g / 170.4 N
|
miażdżący |
| 3 mm |
3950 Gs
395.0 mT
|
14.43 kg / 31.80 lbs
14425.2 g / 141.5 N
|
miażdżący |
| 5 mm |
3240 Gs
324.0 mT
|
9.71 kg / 21.40 lbs
9706.2 g / 95.2 N
|
mocny |
| 10 mm |
1923 Gs
192.3 mT
|
3.42 kg / 7.53 lbs
3417.4 g / 33.5 N
|
mocny |
| 15 mm |
1163 Gs
116.3 mT
|
1.25 kg / 2.76 lbs
1250.2 g / 12.3 N
|
niskie ryzyko |
| 20 mm |
736 Gs
73.6 mT
|
0.50 kg / 1.10 lbs
500.4 g / 4.9 N
|
niskie ryzyko |
| 30 mm |
338 Gs
33.8 mT
|
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
|
niskie ryzyko |
| 50 mm |
106 Gs
10.6 mT
|
0.01 kg / 0.02 lbs
10.3 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 30x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.85 kg / 10.70 lbs
4854.0 g / 47.6 N
|
| 1 mm | Stal (~0.2) |
4.14 kg / 9.12 lbs
4136.0 g / 40.6 N
|
| 2 mm | Stal (~0.2) |
3.47 kg / 7.66 lbs
3474.0 g / 34.1 N
|
| 3 mm | Stal (~0.2) |
2.89 kg / 6.36 lbs
2886.0 g / 28.3 N
|
| 5 mm | Stal (~0.2) |
1.94 kg / 4.28 lbs
1942.0 g / 19.1 N
|
| 10 mm | Stal (~0.2) |
0.68 kg / 1.51 lbs
684.0 g / 6.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 30x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.28 kg / 16.05 lbs
7281.0 g / 71.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.85 kg / 10.70 lbs
4854.0 g / 47.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.43 kg / 5.35 lbs
2427.0 g / 23.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.14 kg / 26.75 lbs
12135.0 g / 119.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 30x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.21 kg / 2.68 lbs
1213.5 g / 11.9 N
|
| 1 mm |
|
3.03 kg / 6.69 lbs
3033.8 g / 29.8 N
|
| 2 mm |
|
6.07 kg / 13.38 lbs
6067.5 g / 59.5 N
|
| 3 mm |
|
9.10 kg / 20.06 lbs
9101.3 g / 89.3 N
|
| 5 mm |
|
15.17 kg / 33.44 lbs
15168.8 g / 148.8 N
|
| 10 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
| 11 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
| 12 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 30x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
OK |
| 40 °C | -2.2% |
23.74 kg / 52.33 lbs
23736.1 g / 232.9 N
|
OK |
| 60 °C | -4.4% |
23.20 kg / 51.15 lbs
23202.1 g / 227.6 N
|
OK |
| 80 °C | -6.6% |
22.67 kg / 49.97 lbs
22668.2 g / 222.4 N
|
|
| 100 °C | -28.8% |
17.28 kg / 38.10 lbs
17280.2 g / 169.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 30x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
97.11 kg / 214.09 lbs
5 859 Gs
|
14.57 kg / 32.11 lbs
14567 g / 142.9 N
|
N/A |
| 1 mm |
89.88 kg / 198.15 lbs
9 859 Gs
|
13.48 kg / 29.72 lbs
13482 g / 132.3 N
|
80.89 kg / 178.34 lbs
~0 Gs
|
| 2 mm |
82.77 kg / 182.47 lbs
9 461 Gs
|
12.42 kg / 27.37 lbs
12415 g / 121.8 N
|
74.49 kg / 164.22 lbs
~0 Gs
|
| 3 mm |
75.96 kg / 167.47 lbs
9 063 Gs
|
11.39 kg / 25.12 lbs
11394 g / 111.8 N
|
68.37 kg / 150.72 lbs
~0 Gs
|
| 5 mm |
63.42 kg / 139.81 lbs
8 281 Gs
|
9.51 kg / 20.97 lbs
9513 g / 93.3 N
|
57.08 kg / 125.83 lbs
~0 Gs
|
| 10 mm |
38.84 kg / 85.62 lbs
6 481 Gs
|
5.83 kg / 12.84 lbs
5826 g / 57.1 N
|
34.95 kg / 77.06 lbs
~0 Gs
|
| 20 mm |
13.67 kg / 30.15 lbs
3 845 Gs
|
2.05 kg / 4.52 lbs
2051 g / 20.1 N
|
12.31 kg / 27.13 lbs
~0 Gs
|
| 50 mm |
0.88 kg / 1.94 lbs
976 Gs
|
0.13 kg / 0.29 lbs
132 g / 1.3 N
|
0.79 kg / 1.75 lbs
~0 Gs
|
| 60 mm |
0.42 kg / 0.93 lbs
675 Gs
|
0.06 kg / 0.14 lbs
63 g / 0.6 N
|
0.38 kg / 0.84 lbs
~0 Gs
|
| 70 mm |
0.22 kg / 0.48 lbs
484 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.43 lbs
~0 Gs
|
| 80 mm |
0.12 kg / 0.26 lbs
358 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 90 mm |
0.07 kg / 0.15 lbs
272 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 100 mm |
0.04 kg / 0.09 lbs
211 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 30x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 30x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.96 km/h
(4.99 m/s)
|
1.12 J | |
| 30 mm |
28.76 km/h
(7.99 m/s)
|
2.87 J | |
| 50 mm |
37.04 km/h
(10.29 m/s)
|
4.76 J | |
| 100 mm |
52.37 km/h
(14.55 m/s)
|
9.52 J |
Tabela 9: Odporność na korozję
MPL 30x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 30x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 30 878 Mx | 308.8 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 30x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.27 kg | Standard |
| Woda (dno rzeki) |
27.79 kg
(+3.52 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie ciała obcego (farba, taśma, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Bezpieczna praca przy magnesach neodymowych
Zagrożenie dla elektroniki
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Poważne obrażenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Zasady obsługi
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Maksymalna temperatura
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Implanty kardiologiczne
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne destabilizuje działanie magnetometrów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Tylko dla dorosłych
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
