MPL 30x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020141
GTIN/EAN: 5906301811473
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
45 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.53 kg / 191.55 N
Indukcja magnetyczna
371.57 mT / 3716 Gs
Powłoka
[NiCuNi] nikiel
16.11 ZŁ z VAT / szt. + cena za transport
13.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub daj znać poprzez
nasz formularz online
na stronie kontakt.
Parametry i wygląd magnesów neodymowych przetestujesz dzięki naszemu
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MPL 30x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020141 |
| GTIN/EAN | 5906301811473 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 45 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.53 kg / 191.55 N |
| Indukcja magnetyczna ~ ? | 371.57 mT / 3716 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Poniższe wartości stanowią bezpośredni efekt kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 30x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3715 Gs
371.5 mT
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
miażdżący |
| 1 mm |
3464 Gs
346.4 mT
|
16.98 kg / 37.44 lbs
16983.1 g / 166.6 N
|
miażdżący |
| 2 mm |
3197 Gs
319.7 mT
|
14.47 kg / 31.89 lbs
14466.6 g / 141.9 N
|
miażdżący |
| 3 mm |
2927 Gs
292.7 mT
|
12.12 kg / 26.73 lbs
12123.3 g / 118.9 N
|
miażdżący |
| 5 mm |
2408 Gs
240.8 mT
|
8.21 kg / 18.10 lbs
8207.8 g / 80.5 N
|
średnie ryzyko |
| 10 mm |
1411 Gs
141.1 mT
|
2.82 kg / 6.21 lbs
2815.6 g / 27.6 N
|
średnie ryzyko |
| 15 mm |
832 Gs
83.2 mT
|
0.98 kg / 2.16 lbs
979.7 g / 9.6 N
|
bezpieczny |
| 20 mm |
512 Gs
51.2 mT
|
0.37 kg / 0.82 lbs
371.2 g / 3.6 N
|
bezpieczny |
| 30 mm |
224 Gs
22.4 mT
|
0.07 kg / 0.16 lbs
70.7 g / 0.7 N
|
bezpieczny |
| 50 mm |
65 Gs
6.5 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 30x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.91 kg / 8.61 lbs
3906.0 g / 38.3 N
|
| 1 mm | Stal (~0.2) |
3.40 kg / 7.49 lbs
3396.0 g / 33.3 N
|
| 2 mm | Stal (~0.2) |
2.89 kg / 6.38 lbs
2894.0 g / 28.4 N
|
| 3 mm | Stal (~0.2) |
2.42 kg / 5.34 lbs
2424.0 g / 23.8 N
|
| 5 mm | Stal (~0.2) |
1.64 kg / 3.62 lbs
1642.0 g / 16.1 N
|
| 10 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
564.0 g / 5.5 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 0.43 lbs
196.0 g / 1.9 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 30x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.86 kg / 12.92 lbs
5859.0 g / 57.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.91 kg / 8.61 lbs
3906.0 g / 38.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.95 kg / 4.31 lbs
1953.0 g / 19.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.77 kg / 21.53 lbs
9765.0 g / 95.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 30x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.98 kg / 2.15 lbs
976.5 g / 9.6 N
|
| 1 mm |
|
2.44 kg / 5.38 lbs
2441.3 g / 23.9 N
|
| 2 mm |
|
4.88 kg / 10.76 lbs
4882.5 g / 47.9 N
|
| 3 mm |
|
7.32 kg / 16.15 lbs
7323.8 g / 71.8 N
|
| 5 mm |
|
12.21 kg / 26.91 lbs
12206.3 g / 119.7 N
|
| 10 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
| 11 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
| 12 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 30x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
OK |
| 40 °C | -2.2% |
19.10 kg / 42.11 lbs
19100.3 g / 187.4 N
|
OK |
| 60 °C | -4.4% |
18.67 kg / 41.16 lbs
18670.7 g / 183.2 N
|
|
| 80 °C | -6.6% |
18.24 kg / 40.21 lbs
18241.0 g / 178.9 N
|
|
| 100 °C | -28.8% |
13.91 kg / 30.66 lbs
13905.4 g / 136.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 30x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
51.05 kg / 112.54 lbs
5 124 Gs
|
7.66 kg / 16.88 lbs
7657 g / 75.1 N
|
N/A |
| 1 mm |
47.76 kg / 105.28 lbs
7 186 Gs
|
7.16 kg / 15.79 lbs
7163 g / 70.3 N
|
42.98 kg / 94.76 lbs
~0 Gs
|
| 2 mm |
44.39 kg / 97.86 lbs
6 928 Gs
|
6.66 kg / 14.68 lbs
6658 g / 65.3 N
|
39.95 kg / 88.08 lbs
~0 Gs
|
| 3 mm |
41.06 kg / 90.52 lbs
6 663 Gs
|
6.16 kg / 13.58 lbs
6159 g / 60.4 N
|
36.95 kg / 81.47 lbs
~0 Gs
|
| 5 mm |
34.68 kg / 76.45 lbs
6 124 Gs
|
5.20 kg / 11.47 lbs
5202 g / 51.0 N
|
31.21 kg / 68.81 lbs
~0 Gs
|
| 10 mm |
21.45 kg / 47.30 lbs
4 817 Gs
|
3.22 kg / 7.09 lbs
3218 g / 31.6 N
|
19.31 kg / 42.57 lbs
~0 Gs
|
| 20 mm |
7.36 kg / 16.22 lbs
2 821 Gs
|
1.10 kg / 2.43 lbs
1104 g / 10.8 N
|
6.62 kg / 14.60 lbs
~0 Gs
|
| 50 mm |
0.40 kg / 0.89 lbs
662 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 60 mm |
0.18 kg / 0.41 lbs
447 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 70 mm |
0.09 kg / 0.20 lbs
314 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.11 lbs
228 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.06 lbs
170 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.03 lbs
130 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 30x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 30x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.82 km/h
(6.34 m/s)
|
0.90 J | |
| 30 mm |
36.47 km/h
(10.13 m/s)
|
2.31 J | |
| 50 mm |
46.99 km/h
(13.05 m/s)
|
3.83 J | |
| 100 mm |
66.44 km/h
(18.46 m/s)
|
7.66 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 30x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 801 Mx | 228.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 30x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.53 kg | Standard |
| Woda (dno rzeki) |
22.36 kg
(+2.83 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- o przekroju nie mniejszej niż 10 mm
- o wypolerowanej powierzchni styku
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Produkt nie dla dzieci
Te produkty magnetyczne nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Ryzyko złamań
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Karty i dyski
Nie przykładaj magnesów do dokumentów, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Używaj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Trwała utrata siły
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie życia
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Reakcje alergiczne
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Kruchy spiek
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
