MPL 30x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020141
GTIN: 5906301811473
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
45 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.53 kg / 191.55 N
Indukcja magnetyczna
371.57 mT / 3716 Gs
Powłoka
[NiCuNi] nikiel
16.11 ZŁ z VAT / szt. + cena za transport
13.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Dzwoń do nas
+48 888 99 98 98
albo pisz przez
formularz
przez naszą stronę.
Masę i kształt magnesów neodymowych przetestujesz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 30x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 30x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020141 |
| GTIN | 5906301811473 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 45 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.53 kg / 191.55 N |
| Indukcja magnetyczna ~ ? | 371.57 mT / 3716 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Poniższe wartości stanowią wynik kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
MPL 30x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3715 Gs
371.5 mT
|
19.53 kg / 19530.0 g
191.6 N
|
krytyczny poziom |
| 1 mm |
3464 Gs
346.4 mT
|
16.98 kg / 16983.1 g
166.6 N
|
krytyczny poziom |
| 2 mm |
3197 Gs
319.7 mT
|
14.47 kg / 14466.6 g
141.9 N
|
krytyczny poziom |
| 3 mm |
2927 Gs
292.7 mT
|
12.12 kg / 12123.3 g
118.9 N
|
krytyczny poziom |
| 5 mm |
2408 Gs
240.8 mT
|
8.21 kg / 8207.8 g
80.5 N
|
uwaga |
| 10 mm |
1411 Gs
141.1 mT
|
2.82 kg / 2815.6 g
27.6 N
|
uwaga |
| 15 mm |
832 Gs
83.2 mT
|
0.98 kg / 979.7 g
9.6 N
|
bezpieczny |
| 20 mm |
512 Gs
51.2 mT
|
0.37 kg / 371.2 g
3.6 N
|
bezpieczny |
| 30 mm |
224 Gs
22.4 mT
|
0.07 kg / 70.7 g
0.7 N
|
bezpieczny |
| 50 mm |
65 Gs
6.5 mT
|
0.01 kg / 6.0 g
0.1 N
|
bezpieczny |
MPL 30x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.91 kg / 3906.0 g
38.3 N
|
| 1 mm | Stal (~0.2) |
3.40 kg / 3396.0 g
33.3 N
|
| 2 mm | Stal (~0.2) |
2.89 kg / 2894.0 g
28.4 N
|
| 3 mm | Stal (~0.2) |
2.42 kg / 2424.0 g
23.8 N
|
| 5 mm | Stal (~0.2) |
1.64 kg / 1642.0 g
16.1 N
|
| 10 mm | Stal (~0.2) |
0.56 kg / 564.0 g
5.5 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 196.0 g
1.9 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MPL 30x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.86 kg / 5859.0 g
57.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.91 kg / 3906.0 g
38.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.95 kg / 1953.0 g
19.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.77 kg / 9765.0 g
95.8 N
|
MPL 30x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.98 kg / 976.5 g
9.6 N
|
| 1 mm |
|
2.44 kg / 2441.3 g
23.9 N
|
| 2 mm |
|
4.88 kg / 4882.5 g
47.9 N
|
| 5 mm |
|
12.21 kg / 12206.3 g
119.7 N
|
| 10 mm |
|
19.53 kg / 19530.0 g
191.6 N
|
MPL 30x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.53 kg / 19530.0 g
191.6 N
|
OK |
| 40 °C | -2.2% |
19.10 kg / 19100.3 g
187.4 N
|
OK |
| 60 °C | -4.4% |
18.67 kg / 18670.7 g
183.2 N
|
|
| 80 °C | -6.6% |
18.24 kg / 18241.0 g
178.9 N
|
|
| 100 °C | -28.8% |
13.91 kg / 13905.4 g
136.4 N
|
MPL 30x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
51.05 kg / 51046 g
500.8 N
5 124 Gs
|
N/A |
| 1 mm |
47.76 kg / 47756 g
468.5 N
7 186 Gs
|
42.98 kg / 42981 g
421.6 N
~0 Gs
|
| 2 mm |
44.39 kg / 44389 g
435.5 N
6 928 Gs
|
39.95 kg / 39950 g
391.9 N
~0 Gs
|
| 3 mm |
41.06 kg / 41060 g
402.8 N
6 663 Gs
|
36.95 kg / 36954 g
362.5 N
~0 Gs
|
| 5 mm |
34.68 kg / 34678 g
340.2 N
6 124 Gs
|
31.21 kg / 31210 g
306.2 N
~0 Gs
|
| 10 mm |
21.45 kg / 21453 g
210.5 N
4 817 Gs
|
19.31 kg / 19308 g
189.4 N
~0 Gs
|
| 20 mm |
7.36 kg / 7359 g
72.2 N
2 821 Gs
|
6.62 kg / 6623 g
65.0 N
~0 Gs
|
| 50 mm |
0.40 kg / 405 g
4.0 N
662 Gs
|
0.36 kg / 364 g
3.6 N
~0 Gs
|
MPL 30x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MPL 30x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.82 km/h
(6.34 m/s)
|
0.90 J | |
| 30 mm |
36.47 km/h
(10.13 m/s)
|
2.31 J | |
| 50 mm |
46.99 km/h
(13.05 m/s)
|
3.83 J | |
| 100 mm |
66.44 km/h
(18.46 m/s)
|
7.66 J |
MPL 30x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 30x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 801 Mx | 228.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
MPL 30x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.53 kg | Standard |
| Woda (dno rzeki) |
22.36 kg
(+2.83 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Zobacz też inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju przynajmniej 10 mm
- o idealnie gładkiej powierzchni styku
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Odstęp (między magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig określano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą obniża siłę trzymania.
Ochrona dłoni
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Zagrożenie życia
Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Ryzyko rozmagnesowania
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od dzieci i zwierząt.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
