MPL 30x15x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020140
GTIN: 5906301811466
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
6.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.11 kg / 20.74 N
Indukcja magnetyczna
115.11 mT / 1151 Gs
Powłoka
[NiCuNi] nikiel
3.89 ZŁ z VAT / szt. + cena za transport
3.16 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz wątpliwości?
Zadzwoń do nas
+48 888 99 98 98
lub skontaktuj się za pomocą
formularz kontaktowy
przez naszą stronę.
Udźwig a także formę magnesu neodymowego zweryfikujesz u nas w
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 30x15x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 30x15x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020140 |
| GTIN | 5906301811466 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 6.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.11 kg / 20.74 N |
| Indukcja magnetyczna ~ ? | 115.11 mT / 1151 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - dane
Niniejsze dane są wynik kalkulacji matematycznej. Wyniki oparte są na modelach dla klasy NdFeB. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MPL 30x15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1151 Gs
115.1 mT
|
2.11 kg / 2110.0 g
20.7 N
|
średnie ryzyko |
| 1 mm |
1098 Gs
109.8 mT
|
1.92 kg / 1920.5 g
18.8 N
|
niskie ryzyko |
| 2 mm |
1019 Gs
101.9 mT
|
1.65 kg / 1654.9 g
16.2 N
|
niskie ryzyko |
| 3 mm |
926 Gs
92.6 mT
|
1.37 kg / 1365.9 g
13.4 N
|
niskie ryzyko |
| 5 mm |
733 Gs
73.3 mT
|
0.86 kg / 855.2 g
8.4 N
|
niskie ryzyko |
| 10 mm |
379 Gs
37.9 mT
|
0.23 kg / 228.8 g
2.2 N
|
niskie ryzyko |
| 15 mm |
203 Gs
20.3 mT
|
0.07 kg / 65.6 g
0.6 N
|
niskie ryzyko |
| 20 mm |
116 Gs
11.6 mT
|
0.02 kg / 21.6 g
0.2 N
|
niskie ryzyko |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 3.4 g
0.0 N
|
niskie ryzyko |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
MPL 30x15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.42 kg / 422.0 g
4.1 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 384.0 g
3.8 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 330.0 g
3.2 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 274.0 g
2.7 N
|
| 5 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 30x15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.63 kg / 633.0 g
6.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.42 kg / 422.0 g
4.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.21 kg / 211.0 g
2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.06 kg / 1055.0 g
10.3 N
|
MPL 30x15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.21 kg / 211.0 g
2.1 N
|
| 1 mm |
|
0.53 kg / 527.5 g
5.2 N
|
| 2 mm |
|
1.06 kg / 1055.0 g
10.3 N
|
| 5 mm |
|
2.11 kg / 2110.0 g
20.7 N
|
| 10 mm |
|
2.11 kg / 2110.0 g
20.7 N
|
MPL 30x15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.11 kg / 2110.0 g
20.7 N
|
OK |
| 40 °C | -2.2% |
2.06 kg / 2063.6 g
20.2 N
|
OK |
| 60 °C | -4.4% |
2.02 kg / 2017.2 g
19.8 N
|
|
| 80 °C | -6.6% |
1.97 kg / 1970.7 g
19.3 N
|
|
| 100 °C | -28.8% |
1.50 kg / 1502.3 g
14.7 N
|
MPL 30x15x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
61.17 kg / 61171 g
600.1 N
12 394 Gs
|
N/A |
| 1 mm |
1.92 kg / 1921 g
18.8 N
2 257 Gs
|
1.73 kg / 1728 g
17.0 N
~0 Gs
|
| 2 mm |
1.65 kg / 1655 g
16.2 N
2 196 Gs
|
1.49 kg / 1489 g
14.6 N
~0 Gs
|
| 3 mm |
1.37 kg / 1366 g
13.4 N
2 122 Gs
|
1.23 kg / 1229 g
12.1 N
~0 Gs
|
| 5 mm |
0.86 kg / 855 g
8.4 N
1 948 Gs
|
0.77 kg / 770 g
7.6 N
~0 Gs
|
| 10 mm |
0.23 kg / 229 g
2.2 N
1 465 Gs
|
0.21 kg / 206 g
2.0 N
~0 Gs
|
| 20 mm |
0.02 kg / 22 g
0.2 N
758 Gs
|
0.02 kg / 19 g
0.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
142 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 30x15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 30x15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.00 km/h
(5.28 m/s)
|
0.09 J | |
| 30 mm |
30.91 km/h
(8.59 m/s)
|
0.25 J | |
| 50 mm |
39.87 km/h
(11.08 m/s)
|
0.41 J | |
| 100 mm |
56.39 km/h
(15.66 m/s)
|
0.83 J |
MPL 30x15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 30x15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 236 Mx | 62.4 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
MPL 30x15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.11 kg | Standard |
| Woda (dno rzeki) |
2.42 kg
(+0.31 kg Zysk z wyporności)
|
+14.5% |
Zobacz też inne produkty
Zalety oraz wady magnesów neodymowych NdFeB.
Należy pamiętać, iż obok ekstremalnej siły, magnesy te wyróżniają się następującymi plusami:
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Mimo zalet, posiadają też wady:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Widoczny w opisie parametr udźwigu odnosi się do siły granicznej, którą zmierzono w warunkach laboratoryjnych, co oznacza test:
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (brak farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
Warto wiedzieć, iż udźwig roboczy może być niższe zależnie od poniższych elementów, w kolejności ważności:
- Szczelina powietrzna (między magnesem a metalem), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
* Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Bezpieczny dystans
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Nie dawać dzieciom
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Zagrożenie zapłonem
Pył powstający podczas obróbki magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Urazy ciała
Silne magnesy mogą zdruzgotać palce błyskawicznie. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Siła neodymu
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Ryzyko pęknięcia
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Zagrożenie życia
Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Zachowaj ostrożność!
Potrzebujesz więcej danych? Sprawdź nasz artykuł: Czy magnesy są groźne?
