MPL 30x15x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020140
GTIN/EAN: 5906301811466
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
6.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.11 kg / 20.74 N
Indukcja magnetyczna
115.11 mT / 1151 Gs
Powłoka
[NiCuNi] nikiel
3.89 ZŁ z VAT / szt. + cena za transport
3.16 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie napisz za pomocą
formularz kontaktowy
na stronie kontakt.
Masę i wygląd elementów magnetycznych sprawdzisz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MPL 30x15x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x15x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020140 |
| GTIN/EAN | 5906301811466 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 6.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.11 kg / 20.74 N |
| Indukcja magnetyczna ~ ? | 115.11 mT / 1151 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Przedstawione informacje stanowią rezultat kalkulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 30x15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1151 Gs
115.1 mT
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
średnie ryzyko |
| 1 mm |
1098 Gs
109.8 mT
|
1.92 kg / 4.23 lbs
1920.5 g / 18.8 N
|
bezpieczny |
| 2 mm |
1019 Gs
101.9 mT
|
1.65 kg / 3.65 lbs
1654.9 g / 16.2 N
|
bezpieczny |
| 3 mm |
926 Gs
92.6 mT
|
1.37 kg / 3.01 lbs
1365.9 g / 13.4 N
|
bezpieczny |
| 5 mm |
733 Gs
73.3 mT
|
0.86 kg / 1.89 lbs
855.2 g / 8.4 N
|
bezpieczny |
| 10 mm |
379 Gs
37.9 mT
|
0.23 kg / 0.50 lbs
228.8 g / 2.2 N
|
bezpieczny |
| 15 mm |
203 Gs
20.3 mT
|
0.07 kg / 0.14 lbs
65.6 g / 0.6 N
|
bezpieczny |
| 20 mm |
116 Gs
11.6 mT
|
0.02 kg / 0.05 lbs
21.6 g / 0.2 N
|
bezpieczny |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
bezpieczny |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 30x15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.73 lbs
330.0 g / 3.2 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 30x15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.63 kg / 1.40 lbs
633.0 g / 6.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.21 kg / 0.47 lbs
211.0 g / 2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 30x15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.21 kg / 0.47 lbs
211.0 g / 2.1 N
|
| 1 mm |
|
0.53 kg / 1.16 lbs
527.5 g / 5.2 N
|
| 2 mm |
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
| 3 mm |
|
1.58 kg / 3.49 lbs
1582.5 g / 15.5 N
|
| 5 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 10 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 11 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 12 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 30x15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
OK |
| 40 °C | -2.2% |
2.06 kg / 4.55 lbs
2063.6 g / 20.2 N
|
OK |
| 60 °C | -4.4% |
2.02 kg / 4.45 lbs
2017.2 g / 19.8 N
|
|
| 80 °C | -6.6% |
1.97 kg / 4.34 lbs
1970.7 g / 19.3 N
|
|
| 100 °C | -28.8% |
1.50 kg / 3.31 lbs
1502.3 g / 14.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 30x15x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.67 kg / 8.10 lbs
2 169 Gs
|
0.55 kg / 1.22 lbs
551 g / 5.4 N
|
N/A |
| 1 mm |
3.53 kg / 7.79 lbs
2 257 Gs
|
0.53 kg / 1.17 lbs
530 g / 5.2 N
|
3.18 kg / 7.01 lbs
~0 Gs
|
| 2 mm |
3.34 kg / 7.37 lbs
2 196 Gs
|
0.50 kg / 1.11 lbs
502 g / 4.9 N
|
3.01 kg / 6.64 lbs
~0 Gs
|
| 3 mm |
3.12 kg / 6.89 lbs
2 122 Gs
|
0.47 kg / 1.03 lbs
469 g / 4.6 N
|
2.81 kg / 6.20 lbs
~0 Gs
|
| 5 mm |
2.63 kg / 5.80 lbs
1 948 Gs
|
0.39 kg / 0.87 lbs
395 g / 3.9 N
|
2.37 kg / 5.22 lbs
~0 Gs
|
| 10 mm |
1.49 kg / 3.28 lbs
1 465 Gs
|
0.22 kg / 0.49 lbs
223 g / 2.2 N
|
1.34 kg / 2.96 lbs
~0 Gs
|
| 20 mm |
0.40 kg / 0.88 lbs
758 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.79 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
142 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
92 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 30x15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 30x15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.00 km/h
(5.28 m/s)
|
0.09 J | |
| 30 mm |
30.91 km/h
(8.59 m/s)
|
0.25 J | |
| 50 mm |
39.87 km/h
(11.08 m/s)
|
0.41 J | |
| 100 mm |
56.39 km/h
(15.66 m/s)
|
0.83 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 30x15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 236 Mx | 62.4 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 30x15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.11 kg | Standard |
| Woda (dno rzeki) |
2.42 kg
(+0.31 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- z wykorzystaniem blachy ze miękkiej stali, która służy jako element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie dla najmłodszych
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Magnesy są kruche
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Interferencja medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Uszkodzenia czujników
Silne pole magnetyczne wpływa negatywnie na działanie czujników w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Zagrożenie fizyczne
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ostrzeżenie dla alergików
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
