MPL 30x15x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020140
GTIN/EAN: 5906301811466
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
6.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.11 kg / 20.74 N
Indukcja magnetyczna
115.11 mT / 1151 Gs
Powłoka
[NiCuNi] nikiel
3.89 ZŁ z VAT / szt. + cena za transport
3.16 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo skontaktuj się poprzez
nasz formularz online
na stronie kontakt.
Moc oraz formę elementów magnetycznych skontrolujesz w naszym
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna - MPL 30x15x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x15x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020140 |
| GTIN/EAN | 5906301811466 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 6.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.11 kg / 20.74 N |
| Indukcja magnetyczna ~ ? | 115.11 mT / 1151 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Niniejsze wartości są rezultat symulacji fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 30x15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1151 Gs
115.1 mT
|
2.11 kg / 2110.0 g
20.7 N
|
mocny |
| 1 mm |
1098 Gs
109.8 mT
|
1.92 kg / 1920.5 g
18.8 N
|
słaby uchwyt |
| 2 mm |
1019 Gs
101.9 mT
|
1.65 kg / 1654.9 g
16.2 N
|
słaby uchwyt |
| 3 mm |
926 Gs
92.6 mT
|
1.37 kg / 1365.9 g
13.4 N
|
słaby uchwyt |
| 5 mm |
733 Gs
73.3 mT
|
0.86 kg / 855.2 g
8.4 N
|
słaby uchwyt |
| 10 mm |
379 Gs
37.9 mT
|
0.23 kg / 228.8 g
2.2 N
|
słaby uchwyt |
| 15 mm |
203 Gs
20.3 mT
|
0.07 kg / 65.6 g
0.6 N
|
słaby uchwyt |
| 20 mm |
116 Gs
11.6 mT
|
0.02 kg / 21.6 g
0.2 N
|
słaby uchwyt |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 3.4 g
0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 30x15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.42 kg / 422.0 g
4.1 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 384.0 g
3.8 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 330.0 g
3.2 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 274.0 g
2.7 N
|
| 5 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 30x15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.63 kg / 633.0 g
6.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.42 kg / 422.0 g
4.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.21 kg / 211.0 g
2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.06 kg / 1055.0 g
10.3 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 30x15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.21 kg / 211.0 g
2.1 N
|
| 1 mm |
|
0.53 kg / 527.5 g
5.2 N
|
| 2 mm |
|
1.06 kg / 1055.0 g
10.3 N
|
| 5 mm |
|
2.11 kg / 2110.0 g
20.7 N
|
| 10 mm |
|
2.11 kg / 2110.0 g
20.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 30x15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.11 kg / 2110.0 g
20.7 N
|
OK |
| 40 °C | -2.2% |
2.06 kg / 2063.6 g
20.2 N
|
OK |
| 60 °C | -4.4% |
2.02 kg / 2017.2 g
19.8 N
|
|
| 80 °C | -6.6% |
1.97 kg / 1970.7 g
19.3 N
|
|
| 100 °C | -28.8% |
1.50 kg / 1502.3 g
14.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 30x15x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.67 kg / 3675 g
36.1 N
2 169 Gs
|
N/A |
| 1 mm |
3.53 kg / 3533 g
34.7 N
2 257 Gs
|
3.18 kg / 3180 g
31.2 N
~0 Gs
|
| 2 mm |
3.34 kg / 3345 g
32.8 N
2 196 Gs
|
3.01 kg / 3010 g
29.5 N
~0 Gs
|
| 3 mm |
3.12 kg / 3124 g
30.6 N
2 122 Gs
|
2.81 kg / 2812 g
27.6 N
~0 Gs
|
| 5 mm |
2.63 kg / 2631 g
25.8 N
1 948 Gs
|
2.37 kg / 2368 g
23.2 N
~0 Gs
|
| 10 mm |
1.49 kg / 1490 g
14.6 N
1 465 Gs
|
1.34 kg / 1341 g
13.2 N
~0 Gs
|
| 20 mm |
0.40 kg / 398 g
3.9 N
758 Gs
|
0.36 kg / 359 g
3.5 N
~0 Gs
|
| 50 mm |
0.01 kg / 14 g
0.1 N
142 Gs
|
0.01 kg / 13 g
0.1 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 30x15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 30x15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.00 km/h
(5.28 m/s)
|
0.09 J | |
| 30 mm |
30.91 km/h
(8.59 m/s)
|
0.25 J | |
| 50 mm |
39.87 km/h
(11.08 m/s)
|
0.41 J | |
| 100 mm |
56.39 km/h
(15.66 m/s)
|
0.83 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 30x15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 30x15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 236 Mx | 62.4 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 30x15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.11 kg | Standard |
| Woda (dno rzeki) |
2.42 kg
(+0.31 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi jedynie ~1% (wg testów).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z użyciem blachy ze stali niskowęglowej, która służy jako zwora magnetyczna
- o przekroju przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie ciała obcego (farba, taśma, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Bezpieczna praca przy magnesach neodymowych
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Uwaga medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Ryzyko uczulenia
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Ostrożność wymagana
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Kruchy spiek
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Nie dawać dzieciom
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Elektronika precyzyjna
Silne pole magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Karty i dyski
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
