MPL 30x15x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020140
GTIN/EAN: 5906301811466
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
6.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.11 kg / 20.74 N
Indukcja magnetyczna
115.11 mT / 1151 Gs
Powłoka
[NiCuNi] nikiel
3.89 ZŁ z VAT / szt. + cena za transport
3.16 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość przez
formularz zgłoszeniowy
na stronie kontakt.
Moc a także budowę magnesu zweryfikujesz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Dane - MPL 30x15x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x15x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020140 |
| GTIN/EAN | 5906301811466 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 6.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.11 kg / 20.74 N |
| Indukcja magnetyczna ~ ? | 115.11 mT / 1151 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Przedstawione wartości stanowią wynik analizy inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MPL 30x15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1151 Gs
115.1 mT
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
mocny |
| 1 mm |
1098 Gs
109.8 mT
|
1.92 kg / 4.23 lbs
1920.5 g / 18.8 N
|
niskie ryzyko |
| 2 mm |
1019 Gs
101.9 mT
|
1.65 kg / 3.65 lbs
1654.9 g / 16.2 N
|
niskie ryzyko |
| 3 mm |
926 Gs
92.6 mT
|
1.37 kg / 3.01 lbs
1365.9 g / 13.4 N
|
niskie ryzyko |
| 5 mm |
733 Gs
73.3 mT
|
0.86 kg / 1.89 lbs
855.2 g / 8.4 N
|
niskie ryzyko |
| 10 mm |
379 Gs
37.9 mT
|
0.23 kg / 0.50 lbs
228.8 g / 2.2 N
|
niskie ryzyko |
| 15 mm |
203 Gs
20.3 mT
|
0.07 kg / 0.14 lbs
65.6 g / 0.6 N
|
niskie ryzyko |
| 20 mm |
116 Gs
11.6 mT
|
0.02 kg / 0.05 lbs
21.6 g / 0.2 N
|
niskie ryzyko |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 30x15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.73 lbs
330.0 g / 3.2 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 30x15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.63 kg / 1.40 lbs
633.0 g / 6.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.21 kg / 0.47 lbs
211.0 g / 2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 30x15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.21 kg / 0.47 lbs
211.0 g / 2.1 N
|
| 1 mm |
|
0.53 kg / 1.16 lbs
527.5 g / 5.2 N
|
| 2 mm |
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
| 3 mm |
|
1.58 kg / 3.49 lbs
1582.5 g / 15.5 N
|
| 5 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 10 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 11 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 12 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 30x15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
OK |
| 40 °C | -2.2% |
2.06 kg / 4.55 lbs
2063.6 g / 20.2 N
|
OK |
| 60 °C | -4.4% |
2.02 kg / 4.45 lbs
2017.2 g / 19.8 N
|
|
| 80 °C | -6.6% |
1.97 kg / 4.34 lbs
1970.7 g / 19.3 N
|
|
| 100 °C | -28.8% |
1.50 kg / 3.31 lbs
1502.3 g / 14.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 30x15x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.67 kg / 8.10 lbs
2 169 Gs
|
0.55 kg / 1.22 lbs
551 g / 5.4 N
|
N/A |
| 1 mm |
3.53 kg / 7.79 lbs
2 257 Gs
|
0.53 kg / 1.17 lbs
530 g / 5.2 N
|
3.18 kg / 7.01 lbs
~0 Gs
|
| 2 mm |
3.34 kg / 7.37 lbs
2 196 Gs
|
0.50 kg / 1.11 lbs
502 g / 4.9 N
|
3.01 kg / 6.64 lbs
~0 Gs
|
| 3 mm |
3.12 kg / 6.89 lbs
2 122 Gs
|
0.47 kg / 1.03 lbs
469 g / 4.6 N
|
2.81 kg / 6.20 lbs
~0 Gs
|
| 5 mm |
2.63 kg / 5.80 lbs
1 948 Gs
|
0.39 kg / 0.87 lbs
395 g / 3.9 N
|
2.37 kg / 5.22 lbs
~0 Gs
|
| 10 mm |
1.49 kg / 3.28 lbs
1 465 Gs
|
0.22 kg / 0.49 lbs
223 g / 2.2 N
|
1.34 kg / 2.96 lbs
~0 Gs
|
| 20 mm |
0.40 kg / 0.88 lbs
758 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.79 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
142 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
92 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 30x15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 30x15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.00 km/h
(5.28 m/s)
|
0.09 J | |
| 30 mm |
30.91 km/h
(8.59 m/s)
|
0.25 J | |
| 50 mm |
39.87 km/h
(11.08 m/s)
|
0.41 J | |
| 100 mm |
56.39 km/h
(15.66 m/s)
|
0.83 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 30x15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 30x15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 236 Mx | 62.4 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 30x15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.11 kg | Standard |
| Woda (dno rzeki) |
2.42 kg
(+0.31 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- z powierzchnią idealnie równą
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (farba, brud, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka stal nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla redukują przenikalność magnetyczną i siłę trzymania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Instrukcja bezpiecznej obsługi magnesów
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Zagrożenie dla najmłodszych
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Samozapłon
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Pole magnetyczne a elektronika
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Potężne pole
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Poważne obrażenia
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
