MPL 30x10x8 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020139
GTIN/EAN: 5906301811459
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.13 kg / 119.04 N
Indukcja magnetyczna
427.56 mT / 4276 Gs
Powłoka
[NiCuNi] nikiel
10.71 ZŁ z VAT / szt. + cena za transport
8.71 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
formularz zapytania
na naszej stronie.
Parametry a także wygląd magnesów neodymowych sprawdzisz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020139 |
| GTIN/EAN | 5906301811459 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.13 kg / 119.04 N |
| Indukcja magnetyczna ~ ? | 427.56 mT / 4276 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Poniższe wartości są wynik kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 30x10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4273 Gs
427.3 mT
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
niebezpieczny! |
| 1 mm |
3683 Gs
368.3 mT
|
9.01 kg / 19.86 lbs
9009.7 g / 88.4 N
|
uwaga |
| 2 mm |
3109 Gs
310.9 mT
|
6.42 kg / 14.15 lbs
6419.9 g / 63.0 N
|
uwaga |
| 3 mm |
2600 Gs
260.0 mT
|
4.49 kg / 9.90 lbs
4488.7 g / 44.0 N
|
uwaga |
| 5 mm |
1818 Gs
181.8 mT
|
2.20 kg / 4.84 lbs
2195.3 g / 21.5 N
|
uwaga |
| 10 mm |
825 Gs
82.5 mT
|
0.45 kg / 1.00 lbs
452.4 g / 4.4 N
|
niskie ryzyko |
| 15 mm |
431 Gs
43.1 mT
|
0.12 kg / 0.27 lbs
123.4 g / 1.2 N
|
niskie ryzyko |
| 20 mm |
248 Gs
24.8 mT
|
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
|
niskie ryzyko |
| 30 mm |
101 Gs
10.1 mT
|
0.01 kg / 0.02 lbs
6.8 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 30x10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.43 kg / 5.35 lbs
2426.0 g / 23.8 N
|
| 1 mm | Stal (~0.2) |
1.80 kg / 3.97 lbs
1802.0 g / 17.7 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 2.83 lbs
1284.0 g / 12.6 N
|
| 3 mm | Stal (~0.2) |
0.90 kg / 1.98 lbs
898.0 g / 8.8 N
|
| 5 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 30x10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.64 kg / 8.02 lbs
3639.0 g / 35.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.43 kg / 5.35 lbs
2426.0 g / 23.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.21 kg / 2.67 lbs
1213.0 g / 11.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.07 kg / 13.37 lbs
6065.0 g / 59.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 30x10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.61 kg / 1.34 lbs
606.5 g / 5.9 N
|
| 1 mm |
|
1.52 kg / 3.34 lbs
1516.3 g / 14.9 N
|
| 2 mm |
|
3.03 kg / 6.69 lbs
3032.5 g / 29.7 N
|
| 3 mm |
|
4.55 kg / 10.03 lbs
4548.8 g / 44.6 N
|
| 5 mm |
|
7.58 kg / 16.71 lbs
7581.3 g / 74.4 N
|
| 10 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 11 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 12 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 30x10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
OK |
| 40 °C | -2.2% |
11.86 kg / 26.15 lbs
11863.1 g / 116.4 N
|
OK |
| 60 °C | -4.4% |
11.60 kg / 25.57 lbs
11596.3 g / 113.8 N
|
|
| 80 °C | -6.6% |
11.33 kg / 24.98 lbs
11329.4 g / 111.1 N
|
|
| 100 °C | -28.8% |
8.64 kg / 19.04 lbs
8636.6 g / 84.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 30x10x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
33.78 kg / 74.46 lbs
5 382 Gs
|
5.07 kg / 11.17 lbs
5066 g / 49.7 N
|
N/A |
| 1 mm |
29.33 kg / 64.66 lbs
7 964 Gs
|
4.40 kg / 9.70 lbs
4399 g / 43.2 N
|
26.39 kg / 58.19 lbs
~0 Gs
|
| 2 mm |
25.09 kg / 55.31 lbs
7 366 Gs
|
3.76 kg / 8.30 lbs
3763 g / 36.9 N
|
22.58 kg / 49.78 lbs
~0 Gs
|
| 3 mm |
21.25 kg / 46.85 lbs
6 780 Gs
|
3.19 kg / 7.03 lbs
3188 g / 31.3 N
|
19.13 kg / 42.17 lbs
~0 Gs
|
| 5 mm |
14.97 kg / 32.99 lbs
5 689 Gs
|
2.24 kg / 4.95 lbs
2245 g / 22.0 N
|
13.47 kg / 29.70 lbs
~0 Gs
|
| 10 mm |
6.11 kg / 13.48 lbs
3 636 Gs
|
0.92 kg / 2.02 lbs
917 g / 9.0 N
|
5.50 kg / 12.13 lbs
~0 Gs
|
| 20 mm |
1.26 kg / 2.78 lbs
1 651 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 50 mm |
0.04 kg / 0.10 lbs
308 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
203 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
140 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
100 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 30x10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 30x10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.78 km/h
(7.44 m/s)
|
0.50 J | |
| 30 mm |
45.36 km/h
(12.60 m/s)
|
1.43 J | |
| 50 mm |
58.54 km/h
(16.26 m/s)
|
2.38 J | |
| 100 mm |
82.79 km/h
(23.00 m/s)
|
4.76 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 30x10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 138 Mx | 121.4 µWb |
| Współczynnik Pc | 0.51 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.13 kg | Standard |
| Woda (dno rzeki) |
13.89 kg
(+1.76 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.51
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) mają nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Uwaga medyczna
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Uczulenie na powłokę
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Chronić przed dziećmi
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Samozapłon
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
