MPL 30x10x8 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020139
GTIN/EAN: 5906301811459
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.13 kg / 119.04 N
Indukcja magnetyczna
427.56 mT / 4276 Gs
Powłoka
[NiCuNi] nikiel
10.71 ZŁ z VAT / szt. + cena za transport
8.71 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo skontaktuj się korzystając z
formularz
w sekcji kontakt.
Masę a także kształt magnesu neodymowego przetestujesz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020139 |
| GTIN/EAN | 5906301811459 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.13 kg / 119.04 N |
| Indukcja magnetyczna ~ ? | 427.56 mT / 4276 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Poniższe dane stanowią wynik symulacji fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MPL 30x10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4273 Gs
427.3 mT
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
miażdżący |
| 1 mm |
3683 Gs
368.3 mT
|
9.01 kg / 19.86 lbs
9009.7 g / 88.4 N
|
średnie ryzyko |
| 2 mm |
3109 Gs
310.9 mT
|
6.42 kg / 14.15 lbs
6419.9 g / 63.0 N
|
średnie ryzyko |
| 3 mm |
2600 Gs
260.0 mT
|
4.49 kg / 9.90 lbs
4488.7 g / 44.0 N
|
średnie ryzyko |
| 5 mm |
1818 Gs
181.8 mT
|
2.20 kg / 4.84 lbs
2195.3 g / 21.5 N
|
średnie ryzyko |
| 10 mm |
825 Gs
82.5 mT
|
0.45 kg / 1.00 lbs
452.4 g / 4.4 N
|
bezpieczny |
| 15 mm |
431 Gs
43.1 mT
|
0.12 kg / 0.27 lbs
123.4 g / 1.2 N
|
bezpieczny |
| 20 mm |
248 Gs
24.8 mT
|
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
|
bezpieczny |
| 30 mm |
101 Gs
10.1 mT
|
0.01 kg / 0.02 lbs
6.8 g / 0.1 N
|
bezpieczny |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 30x10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.43 kg / 5.35 lbs
2426.0 g / 23.8 N
|
| 1 mm | Stal (~0.2) |
1.80 kg / 3.97 lbs
1802.0 g / 17.7 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 2.83 lbs
1284.0 g / 12.6 N
|
| 3 mm | Stal (~0.2) |
0.90 kg / 1.98 lbs
898.0 g / 8.8 N
|
| 5 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 30x10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.64 kg / 8.02 lbs
3639.0 g / 35.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.43 kg / 5.35 lbs
2426.0 g / 23.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.21 kg / 2.67 lbs
1213.0 g / 11.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.07 kg / 13.37 lbs
6065.0 g / 59.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 30x10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.61 kg / 1.34 lbs
606.5 g / 5.9 N
|
| 1 mm |
|
1.52 kg / 3.34 lbs
1516.3 g / 14.9 N
|
| 2 mm |
|
3.03 kg / 6.69 lbs
3032.5 g / 29.7 N
|
| 3 mm |
|
4.55 kg / 10.03 lbs
4548.8 g / 44.6 N
|
| 5 mm |
|
7.58 kg / 16.71 lbs
7581.3 g / 74.4 N
|
| 10 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 11 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 12 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 30x10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
OK |
| 40 °C | -2.2% |
11.86 kg / 26.15 lbs
11863.1 g / 116.4 N
|
OK |
| 60 °C | -4.4% |
11.60 kg / 25.57 lbs
11596.3 g / 113.8 N
|
|
| 80 °C | -6.6% |
11.33 kg / 24.98 lbs
11329.4 g / 111.1 N
|
|
| 100 °C | -28.8% |
8.64 kg / 19.04 lbs
8636.6 g / 84.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 30x10x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
33.78 kg / 74.46 lbs
5 382 Gs
|
5.07 kg / 11.17 lbs
5066 g / 49.7 N
|
N/A |
| 1 mm |
29.33 kg / 64.66 lbs
7 964 Gs
|
4.40 kg / 9.70 lbs
4399 g / 43.2 N
|
26.39 kg / 58.19 lbs
~0 Gs
|
| 2 mm |
25.09 kg / 55.31 lbs
7 366 Gs
|
3.76 kg / 8.30 lbs
3763 g / 36.9 N
|
22.58 kg / 49.78 lbs
~0 Gs
|
| 3 mm |
21.25 kg / 46.85 lbs
6 780 Gs
|
3.19 kg / 7.03 lbs
3188 g / 31.3 N
|
19.13 kg / 42.17 lbs
~0 Gs
|
| 5 mm |
14.97 kg / 32.99 lbs
5 689 Gs
|
2.24 kg / 4.95 lbs
2245 g / 22.0 N
|
13.47 kg / 29.70 lbs
~0 Gs
|
| 10 mm |
6.11 kg / 13.48 lbs
3 636 Gs
|
0.92 kg / 2.02 lbs
917 g / 9.0 N
|
5.50 kg / 12.13 lbs
~0 Gs
|
| 20 mm |
1.26 kg / 2.78 lbs
1 651 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 50 mm |
0.04 kg / 0.10 lbs
308 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
203 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
140 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
100 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 30x10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 30x10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.78 km/h
(7.44 m/s)
|
0.50 J | |
| 30 mm |
45.36 km/h
(12.60 m/s)
|
1.43 J | |
| 50 mm |
58.54 km/h
(16.26 m/s)
|
2.38 J | |
| 100 mm |
82.79 km/h
(23.00 m/s)
|
4.76 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 30x10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 30x10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 138 Mx | 121.4 µWb |
| Współczynnik Pc | 0.51 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 30x10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.13 kg | Standard |
| Woda (dno rzeki) |
13.89 kg
(+1.76 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.51
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o przekroju przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – za chuda stal nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Ostrzeżenia
Kompas i GPS
Silne pole magnetyczne destabilizuje funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Uczulenie na powłokę
Niektóre osoby wykazuje nadwrażliwość na nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może wywołać wysypkę. Zalecamy noszenie rękawiczek ochronnych.
Ryzyko połknięcia
Magnesy neodymowe nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Nośniki danych
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Trwała utrata siły
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Siła zgniatająca
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Zagrożenie wybuchem pyłu
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
