MPL 30x10x8 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020139
GTIN/EAN: 5906301811459
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.13 kg / 119.04 N
Indukcja magnetyczna
427.56 mT / 4276 Gs
Powłoka
[NiCuNi] nikiel
10.71 ZŁ z VAT / szt. + cena za transport
8.71 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz zapytania
na stronie kontaktowej.
Moc i formę magnesów neodymowych obliczysz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane produktu - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020139 |
| GTIN/EAN | 5906301811459 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.13 kg / 119.04 N |
| Indukcja magnetyczna ~ ? | 427.56 mT / 4276 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Przedstawione informacje są bezpośredni efekt symulacji inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 30x10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4273 Gs
427.3 mT
|
12.13 kg / 12130.0 g
119.0 N
|
miażdżący |
| 1 mm |
3683 Gs
368.3 mT
|
9.01 kg / 9009.7 g
88.4 N
|
uwaga |
| 2 mm |
3109 Gs
310.9 mT
|
6.42 kg / 6419.9 g
63.0 N
|
uwaga |
| 3 mm |
2600 Gs
260.0 mT
|
4.49 kg / 4488.7 g
44.0 N
|
uwaga |
| 5 mm |
1818 Gs
181.8 mT
|
2.20 kg / 2195.3 g
21.5 N
|
uwaga |
| 10 mm |
825 Gs
82.5 mT
|
0.45 kg / 452.4 g
4.4 N
|
słaby uchwyt |
| 15 mm |
431 Gs
43.1 mT
|
0.12 kg / 123.4 g
1.2 N
|
słaby uchwyt |
| 20 mm |
248 Gs
24.8 mT
|
0.04 kg / 41.0 g
0.4 N
|
słaby uchwyt |
| 30 mm |
101 Gs
10.1 mT
|
0.01 kg / 6.8 g
0.1 N
|
słaby uchwyt |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.5 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 30x10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.43 kg / 2426.0 g
23.8 N
|
| 1 mm | Stal (~0.2) |
1.80 kg / 1802.0 g
17.7 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 1284.0 g
12.6 N
|
| 3 mm | Stal (~0.2) |
0.90 kg / 898.0 g
8.8 N
|
| 5 mm | Stal (~0.2) |
0.44 kg / 440.0 g
4.3 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 30x10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.64 kg / 3639.0 g
35.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.43 kg / 2426.0 g
23.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.21 kg / 1213.0 g
11.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.07 kg / 6065.0 g
59.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 30x10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.61 kg / 606.5 g
5.9 N
|
| 1 mm |
|
1.52 kg / 1516.3 g
14.9 N
|
| 2 mm |
|
3.03 kg / 3032.5 g
29.7 N
|
| 5 mm |
|
7.58 kg / 7581.3 g
74.4 N
|
| 10 mm |
|
12.13 kg / 12130.0 g
119.0 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 30x10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.13 kg / 12130.0 g
119.0 N
|
OK |
| 40 °C | -2.2% |
11.86 kg / 11863.1 g
116.4 N
|
OK |
| 60 °C | -4.4% |
11.60 kg / 11596.3 g
113.8 N
|
|
| 80 °C | -6.6% |
11.33 kg / 11329.4 g
111.1 N
|
|
| 100 °C | -28.8% |
8.64 kg / 8636.6 g
84.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 30x10x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
33.78 kg / 33776 g
331.3 N
5 382 Gs
|
N/A |
| 1 mm |
29.33 kg / 29328 g
287.7 N
7 964 Gs
|
26.39 kg / 26395 g
258.9 N
~0 Gs
|
| 2 mm |
25.09 kg / 25087 g
246.1 N
7 366 Gs
|
22.58 kg / 22578 g
221.5 N
~0 Gs
|
| 3 mm |
21.25 kg / 21252 g
208.5 N
6 780 Gs
|
19.13 kg / 19127 g
187.6 N
~0 Gs
|
| 5 mm |
14.97 kg / 14966 g
146.8 N
5 689 Gs
|
13.47 kg / 13469 g
132.1 N
~0 Gs
|
| 10 mm |
6.11 kg / 6113 g
60.0 N
3 636 Gs
|
5.50 kg / 5502 g
54.0 N
~0 Gs
|
| 20 mm |
1.26 kg / 1260 g
12.4 N
1 651 Gs
|
1.13 kg / 1134 g
11.1 N
~0 Gs
|
| 50 mm |
0.04 kg / 44 g
0.4 N
308 Gs
|
0.04 kg / 40 g
0.4 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 30x10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 30x10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.78 km/h
(7.44 m/s)
|
0.50 J | |
| 30 mm |
45.36 km/h
(12.60 m/s)
|
1.43 J | |
| 50 mm |
58.54 km/h
(16.26 m/s)
|
2.38 J | |
| 100 mm |
82.79 km/h
(23.00 m/s)
|
4.76 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 30x10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 138 Mx | 121.4 µWb |
| Współczynnik Pc | 0.51 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.13 kg | Standard |
| Woda (dno rzeki) |
13.89 kg
(+1.76 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.51
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o grubości przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy osiowym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Dystans – obecność jakiejkolwiek warstwy (farba, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Samozapłon
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Produkt nie dla dzieci
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Ryzyko uczulenia
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Ostrożność wymagana
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zagrożenie fizyczne
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Urządzenia elektroniczne
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
