MPL 30x10x8 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020139
GTIN/EAN: 5906301811459
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.13 kg / 119.04 N
Indukcja magnetyczna
427.56 mT / 4276 Gs
Powłoka
[NiCuNi] nikiel
10.71 ZŁ z VAT / szt. + cena za transport
8.71 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo daj znać poprzez
formularz zgłoszeniowy
na naszej stronie.
Właściwości oraz formę magnesu neodymowego sprawdzisz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020139 |
| GTIN/EAN | 5906301811459 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.13 kg / 119.04 N |
| Indukcja magnetyczna ~ ? | 427.56 mT / 4276 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Przedstawione wartości stanowią wynik kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MPL 30x10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4273 Gs
427.3 mT
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
krytyczny poziom |
| 1 mm |
3683 Gs
368.3 mT
|
9.01 kg / 19.86 lbs
9009.7 g / 88.4 N
|
uwaga |
| 2 mm |
3109 Gs
310.9 mT
|
6.42 kg / 14.15 lbs
6419.9 g / 63.0 N
|
uwaga |
| 3 mm |
2600 Gs
260.0 mT
|
4.49 kg / 9.90 lbs
4488.7 g / 44.0 N
|
uwaga |
| 5 mm |
1818 Gs
181.8 mT
|
2.20 kg / 4.84 lbs
2195.3 g / 21.5 N
|
uwaga |
| 10 mm |
825 Gs
82.5 mT
|
0.45 kg / 1.00 lbs
452.4 g / 4.4 N
|
słaby uchwyt |
| 15 mm |
431 Gs
43.1 mT
|
0.12 kg / 0.27 lbs
123.4 g / 1.2 N
|
słaby uchwyt |
| 20 mm |
248 Gs
24.8 mT
|
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
|
słaby uchwyt |
| 30 mm |
101 Gs
10.1 mT
|
0.01 kg / 0.02 lbs
6.8 g / 0.1 N
|
słaby uchwyt |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 30x10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.43 kg / 5.35 lbs
2426.0 g / 23.8 N
|
| 1 mm | Stal (~0.2) |
1.80 kg / 3.97 lbs
1802.0 g / 17.7 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 2.83 lbs
1284.0 g / 12.6 N
|
| 3 mm | Stal (~0.2) |
0.90 kg / 1.98 lbs
898.0 g / 8.8 N
|
| 5 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 30x10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.64 kg / 8.02 lbs
3639.0 g / 35.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.43 kg / 5.35 lbs
2426.0 g / 23.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.21 kg / 2.67 lbs
1213.0 g / 11.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.07 kg / 13.37 lbs
6065.0 g / 59.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 30x10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.61 kg / 1.34 lbs
606.5 g / 5.9 N
|
| 1 mm |
|
1.52 kg / 3.34 lbs
1516.3 g / 14.9 N
|
| 2 mm |
|
3.03 kg / 6.69 lbs
3032.5 g / 29.7 N
|
| 3 mm |
|
4.55 kg / 10.03 lbs
4548.8 g / 44.6 N
|
| 5 mm |
|
7.58 kg / 16.71 lbs
7581.3 g / 74.4 N
|
| 10 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 11 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 12 mm |
|
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 30x10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
OK |
| 40 °C | -2.2% |
11.86 kg / 26.15 lbs
11863.1 g / 116.4 N
|
OK |
| 60 °C | -4.4% |
11.60 kg / 25.57 lbs
11596.3 g / 113.8 N
|
|
| 80 °C | -6.6% |
11.33 kg / 24.98 lbs
11329.4 g / 111.1 N
|
|
| 100 °C | -28.8% |
8.64 kg / 19.04 lbs
8636.6 g / 84.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 30x10x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
33.78 kg / 74.46 lbs
5 382 Gs
|
5.07 kg / 11.17 lbs
5066 g / 49.7 N
|
N/A |
| 1 mm |
29.33 kg / 64.66 lbs
7 964 Gs
|
4.40 kg / 9.70 lbs
4399 g / 43.2 N
|
26.39 kg / 58.19 lbs
~0 Gs
|
| 2 mm |
25.09 kg / 55.31 lbs
7 366 Gs
|
3.76 kg / 8.30 lbs
3763 g / 36.9 N
|
22.58 kg / 49.78 lbs
~0 Gs
|
| 3 mm |
21.25 kg / 46.85 lbs
6 780 Gs
|
3.19 kg / 7.03 lbs
3188 g / 31.3 N
|
19.13 kg / 42.17 lbs
~0 Gs
|
| 5 mm |
14.97 kg / 32.99 lbs
5 689 Gs
|
2.24 kg / 4.95 lbs
2245 g / 22.0 N
|
13.47 kg / 29.70 lbs
~0 Gs
|
| 10 mm |
6.11 kg / 13.48 lbs
3 636 Gs
|
0.92 kg / 2.02 lbs
917 g / 9.0 N
|
5.50 kg / 12.13 lbs
~0 Gs
|
| 20 mm |
1.26 kg / 2.78 lbs
1 651 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 50 mm |
0.04 kg / 0.10 lbs
308 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
203 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
140 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
100 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 30x10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 30x10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.78 km/h
(7.44 m/s)
|
0.50 J | |
| 30 mm |
45.36 km/h
(12.60 m/s)
|
1.43 J | |
| 50 mm |
58.54 km/h
(16.26 m/s)
|
2.38 J | |
| 100 mm |
82.79 km/h
(23.00 m/s)
|
4.76 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 30x10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 30x10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 138 Mx | 121.4 µWb |
| Współczynnik Pc | 0.51 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.13 kg | Standard |
| Woda (dno rzeki) |
13.89 kg
(+1.76 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.51
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) mają nowoczesny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z użyciem blachy ze miękkiej stali, która służy jako element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- o szlifowanej powierzchni styku
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina między magnesem, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Alergia na nikiel
Niektóre osoby wykazuje nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Rekomendujemy używanie rękawiczek ochronnych.
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Uwaga: zadławienie
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Zakaz obróbki
Pył powstający podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Ostrożność wymagana
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Ostrzeżenie dla sercowców
Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Karty i dyski
Unikaj zbliżania magnesów do portfela, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Łamliwość magnesów
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Urazy ciała
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
