MPL 20x8x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020133
GTIN/EAN: 5906301811398
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
4.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.79 kg / 46.98 N
Indukcja magnetyczna
336.99 mT / 3370 Gs
Powłoka
[NiCuNi] nikiel
3.67 ZŁ z VAT / szt. + cena za transport
2.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo zostaw wiadomość przez
formularz zgłoszeniowy
na stronie kontakt.
Parametry a także budowę magnesu zweryfikujesz u nas w
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry techniczne produktu - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020133 |
| GTIN/EAN | 5906301811398 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 4.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.79 kg / 46.98 N |
| Indukcja magnetyczna ~ ? | 336.99 mT / 3370 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Przedstawione informacje stanowią rezultat symulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MPL 20x8x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3368 Gs
336.8 mT
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
uwaga |
| 1 mm |
2818 Gs
281.8 mT
|
3.35 kg / 7.39 lbs
3352.3 g / 32.9 N
|
uwaga |
| 2 mm |
2266 Gs
226.6 mT
|
2.17 kg / 4.78 lbs
2167.6 g / 21.3 N
|
uwaga |
| 3 mm |
1794 Gs
179.4 mT
|
1.36 kg / 3.00 lbs
1358.6 g / 13.3 N
|
bezpieczny |
| 5 mm |
1130 Gs
113.0 mT
|
0.54 kg / 1.19 lbs
538.9 g / 5.3 N
|
bezpieczny |
| 10 mm |
416 Gs
41.6 mT
|
0.07 kg / 0.16 lbs
73.0 g / 0.7 N
|
bezpieczny |
| 15 mm |
187 Gs
18.7 mT
|
0.01 kg / 0.03 lbs
14.7 g / 0.1 N
|
bezpieczny |
| 20 mm |
97 Gs
9.7 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 20x8x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| 1 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
670.0 g / 6.6 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
272.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 20x8x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.44 kg / 3.17 lbs
1437.0 g / 14.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 1.06 lbs
479.0 g / 4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 20x8x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 1.06 lbs
479.0 g / 4.7 N
|
| 1 mm |
|
1.20 kg / 2.64 lbs
1197.5 g / 11.7 N
|
| 2 mm |
|
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
|
| 3 mm |
|
3.59 kg / 7.92 lbs
3592.5 g / 35.2 N
|
| 5 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 10 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 11 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 12 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 20x8x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
OK |
| 40 °C | -2.2% |
4.68 kg / 10.33 lbs
4684.6 g / 46.0 N
|
OK |
| 60 °C | -4.4% |
4.58 kg / 10.10 lbs
4579.2 g / 44.9 N
|
|
| 80 °C | -6.6% |
4.47 kg / 9.86 lbs
4473.9 g / 43.9 N
|
|
| 100 °C | -28.8% |
3.41 kg / 7.52 lbs
3410.5 g / 33.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 20x8x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
11.19 kg / 24.67 lbs
4 784 Gs
|
1.68 kg / 3.70 lbs
1678 g / 16.5 N
|
N/A |
| 1 mm |
9.49 kg / 20.93 lbs
6 205 Gs
|
1.42 kg / 3.14 lbs
1424 g / 14.0 N
|
8.54 kg / 18.84 lbs
~0 Gs
|
| 2 mm |
7.83 kg / 17.26 lbs
5 635 Gs
|
1.17 kg / 2.59 lbs
1175 g / 11.5 N
|
7.05 kg / 15.54 lbs
~0 Gs
|
| 3 mm |
6.34 kg / 13.97 lbs
5 069 Gs
|
0.95 kg / 2.10 lbs
951 g / 9.3 N
|
5.70 kg / 12.57 lbs
~0 Gs
|
| 5 mm |
4.02 kg / 8.85 lbs
4 035 Gs
|
0.60 kg / 1.33 lbs
602 g / 5.9 N
|
3.61 kg / 7.97 lbs
~0 Gs
|
| 10 mm |
1.26 kg / 2.78 lbs
2 259 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.38 lbs
832 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.15 kg / 0.34 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
112 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
70 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 20x8x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x8x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.16 km/h
(8.93 m/s)
|
0.19 J | |
| 30 mm |
55.18 km/h
(15.33 m/s)
|
0.56 J | |
| 50 mm |
71.24 km/h
(19.79 m/s)
|
0.94 J | |
| 100 mm |
100.75 km/h
(27.99 m/s)
|
1.88 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 20x8x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x8x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 277 Mx | 52.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 20x8x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.79 kg | Standard |
| Woda (dno rzeki) |
5.48 kg
(+0.69 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (metal do metalu)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Uwaga: zadławienie
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Uszkodzenia czujników
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Zagrożenie zapłonem
Pył powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ogromna siła
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Nadwrażliwość na metale
Część populacji posiada nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może powodować wysypkę. Zalecamy noszenie rękawiczek ochronnych.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
