MPL 20x8x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020133
GTIN/EAN: 5906301811398
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
4.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.79 kg / 46.98 N
Indukcja magnetyczna
336.99 mT / 3370 Gs
Powłoka
[NiCuNi] nikiel
3.67 ZŁ z VAT / szt. + cena za transport
2.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie pisz za pomocą
nasz formularz online
na stronie kontakt.
Masę i budowę magnesów neodymowych testujesz u nas w
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne produktu - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020133 |
| GTIN/EAN | 5906301811398 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 4.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.79 kg / 46.98 N |
| Indukcja magnetyczna ~ ? | 336.99 mT / 3370 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe dane stanowią wynik kalkulacji fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MPL 20x8x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3368 Gs
336.8 mT
|
4.79 kg / 4790.0 g
47.0 N
|
mocny |
| 1 mm |
2818 Gs
281.8 mT
|
3.35 kg / 3352.3 g
32.9 N
|
mocny |
| 2 mm |
2266 Gs
226.6 mT
|
2.17 kg / 2167.6 g
21.3 N
|
mocny |
| 3 mm |
1794 Gs
179.4 mT
|
1.36 kg / 1358.6 g
13.3 N
|
bezpieczny |
| 5 mm |
1130 Gs
113.0 mT
|
0.54 kg / 538.9 g
5.3 N
|
bezpieczny |
| 10 mm |
416 Gs
41.6 mT
|
0.07 kg / 73.0 g
0.7 N
|
bezpieczny |
| 15 mm |
187 Gs
18.7 mT
|
0.01 kg / 14.7 g
0.1 N
|
bezpieczny |
| 20 mm |
97 Gs
9.7 mT
|
0.00 kg / 4.0 g
0.0 N
|
bezpieczny |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.5 g
0.0 N
|
bezpieczny |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 20x8x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.96 kg / 958.0 g
9.4 N
|
| 1 mm | Stal (~0.2) |
0.67 kg / 670.0 g
6.6 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 272.0 g
2.7 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 20x8x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.44 kg / 1437.0 g
14.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.96 kg / 958.0 g
9.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 479.0 g
4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.40 kg / 2395.0 g
23.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 20x8x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 479.0 g
4.7 N
|
| 1 mm |
|
1.20 kg / 1197.5 g
11.7 N
|
| 2 mm |
|
2.40 kg / 2395.0 g
23.5 N
|
| 5 mm |
|
4.79 kg / 4790.0 g
47.0 N
|
| 10 mm |
|
4.79 kg / 4790.0 g
47.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 20x8x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.79 kg / 4790.0 g
47.0 N
|
OK |
| 40 °C | -2.2% |
4.68 kg / 4684.6 g
46.0 N
|
OK |
| 60 °C | -4.4% |
4.58 kg / 4579.2 g
44.9 N
|
|
| 80 °C | -6.6% |
4.47 kg / 4473.9 g
43.9 N
|
|
| 100 °C | -28.8% |
3.41 kg / 3410.5 g
33.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 20x8x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
11.19 kg / 11189 g
109.8 N
4 784 Gs
|
N/A |
| 1 mm |
9.49 kg / 9494 g
93.1 N
6 205 Gs
|
8.54 kg / 8544 g
83.8 N
~0 Gs
|
| 2 mm |
7.83 kg / 7830 g
76.8 N
5 635 Gs
|
7.05 kg / 7047 g
69.1 N
~0 Gs
|
| 3 mm |
6.34 kg / 6337 g
62.2 N
5 069 Gs
|
5.70 kg / 5703 g
55.9 N
~0 Gs
|
| 5 mm |
4.02 kg / 4015 g
39.4 N
4 035 Gs
|
3.61 kg / 3614 g
35.4 N
~0 Gs
|
| 10 mm |
1.26 kg / 1259 g
12.3 N
2 259 Gs
|
1.13 kg / 1133 g
11.1 N
~0 Gs
|
| 20 mm |
0.17 kg / 171 g
1.7 N
832 Gs
|
0.15 kg / 154 g
1.5 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
112 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 20x8x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x8x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.16 km/h
(8.93 m/s)
|
0.19 J | |
| 30 mm |
55.18 km/h
(15.33 m/s)
|
0.56 J | |
| 50 mm |
71.24 km/h
(19.79 m/s)
|
0.94 J | |
| 100 mm |
100.75 km/h
(27.99 m/s)
|
1.88 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 20x8x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 20x8x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 277 Mx | 52.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 20x8x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.79 kg | Standard |
| Woda (dno rzeki) |
5.48 kg
(+0.69 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi tylko ~1% (teoretycznie).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- o szlifowanej powierzchni styku
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Dystans (pomiędzy magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Pył jest łatwopalny
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zakaz zabawy
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Reakcje alergiczne
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Moc przyciągania
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
