MPL 20x8x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020133
GTIN/EAN: 5906301811398
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
4.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.79 kg / 46.98 N
Indukcja magnetyczna
336.99 mT / 3370 Gs
Powłoka
[NiCuNi] nikiel
3.67 ZŁ z VAT / szt. + cena za transport
2.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz kontaktowy
w sekcji kontakt.
Masę i formę magnesów neodymowych przetestujesz dzięki naszemu
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020133 |
| GTIN/EAN | 5906301811398 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 4.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.79 kg / 46.98 N |
| Indukcja magnetyczna ~ ? | 336.99 mT / 3370 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione dane stanowią bezpośredni efekt kalkulacji matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 20x8x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3368 Gs
336.8 mT
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
uwaga |
| 1 mm |
2818 Gs
281.8 mT
|
3.35 kg / 7.39 lbs
3352.3 g / 32.9 N
|
uwaga |
| 2 mm |
2266 Gs
226.6 mT
|
2.17 kg / 4.78 lbs
2167.6 g / 21.3 N
|
uwaga |
| 3 mm |
1794 Gs
179.4 mT
|
1.36 kg / 3.00 lbs
1358.6 g / 13.3 N
|
niskie ryzyko |
| 5 mm |
1130 Gs
113.0 mT
|
0.54 kg / 1.19 lbs
538.9 g / 5.3 N
|
niskie ryzyko |
| 10 mm |
416 Gs
41.6 mT
|
0.07 kg / 0.16 lbs
73.0 g / 0.7 N
|
niskie ryzyko |
| 15 mm |
187 Gs
18.7 mT
|
0.01 kg / 0.03 lbs
14.7 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
97 Gs
9.7 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 20x8x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| 1 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
670.0 g / 6.6 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
272.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 20x8x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.44 kg / 3.17 lbs
1437.0 g / 14.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 1.06 lbs
479.0 g / 4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 20x8x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 1.06 lbs
479.0 g / 4.7 N
|
| 1 mm |
|
1.20 kg / 2.64 lbs
1197.5 g / 11.7 N
|
| 2 mm |
|
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
|
| 3 mm |
|
3.59 kg / 7.92 lbs
3592.5 g / 35.2 N
|
| 5 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 10 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 11 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 12 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 20x8x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
OK |
| 40 °C | -2.2% |
4.68 kg / 10.33 lbs
4684.6 g / 46.0 N
|
OK |
| 60 °C | -4.4% |
4.58 kg / 10.10 lbs
4579.2 g / 44.9 N
|
|
| 80 °C | -6.6% |
4.47 kg / 9.86 lbs
4473.9 g / 43.9 N
|
|
| 100 °C | -28.8% |
3.41 kg / 7.52 lbs
3410.5 g / 33.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 20x8x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
11.19 kg / 24.67 lbs
4 784 Gs
|
1.68 kg / 3.70 lbs
1678 g / 16.5 N
|
N/A |
| 1 mm |
9.49 kg / 20.93 lbs
6 205 Gs
|
1.42 kg / 3.14 lbs
1424 g / 14.0 N
|
8.54 kg / 18.84 lbs
~0 Gs
|
| 2 mm |
7.83 kg / 17.26 lbs
5 635 Gs
|
1.17 kg / 2.59 lbs
1175 g / 11.5 N
|
7.05 kg / 15.54 lbs
~0 Gs
|
| 3 mm |
6.34 kg / 13.97 lbs
5 069 Gs
|
0.95 kg / 2.10 lbs
951 g / 9.3 N
|
5.70 kg / 12.57 lbs
~0 Gs
|
| 5 mm |
4.02 kg / 8.85 lbs
4 035 Gs
|
0.60 kg / 1.33 lbs
602 g / 5.9 N
|
3.61 kg / 7.97 lbs
~0 Gs
|
| 10 mm |
1.26 kg / 2.78 lbs
2 259 Gs
|
0.19 kg / 0.42 lbs
189 g / 1.9 N
|
1.13 kg / 2.50 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.38 lbs
832 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.15 kg / 0.34 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
112 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
70 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 20x8x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 20x8x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.16 km/h
(8.93 m/s)
|
0.19 J | |
| 30 mm |
55.18 km/h
(15.33 m/s)
|
0.56 J | |
| 50 mm |
71.24 km/h
(19.79 m/s)
|
0.94 J | |
| 100 mm |
100.75 km/h
(27.99 m/s)
|
1.88 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 20x8x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 20x8x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 277 Mx | 52.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 20x8x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.79 kg | Standard |
| Woda (dno rzeki) |
5.48 kg
(+0.69 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność koercji.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach z neodymem
Ochrona urządzeń
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Interferencja magnetyczna
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Utrata mocy w cieple
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Samozapłon
Proszek generowany podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Ryzyko złamań
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Ostrzeżenie dla alergików
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może wywołać silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Kruchość materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
