MPL 20x3x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020130
GTIN/EAN: 5906301811367
Długość
20 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.33 kg / 22.90 N
Indukcja magnetyczna
370.68 mT / 3707 Gs
Powłoka
[NiCuNi] nikiel
0.394 ZŁ z VAT / szt. + cena za transport
0.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie pisz korzystając z
formularz zgłoszeniowy
w sekcji kontakt.
Siłę a także kształt elementów magnetycznych zobaczysz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 20x3x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x3x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020130 |
| GTIN/EAN | 5906301811367 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.33 kg / 22.90 N |
| Indukcja magnetyczna ~ ? | 370.68 mT / 3707 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Poniższe informacje stanowią rezultat kalkulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 20x3x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3700 Gs
370.0 mT
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
mocny |
| 1 mm |
2103 Gs
210.3 mT
|
0.75 kg / 1.66 lbs
752.3 g / 7.4 N
|
słaby uchwyt |
| 2 mm |
1172 Gs
117.2 mT
|
0.23 kg / 0.52 lbs
233.7 g / 2.3 N
|
słaby uchwyt |
| 3 mm |
721 Gs
72.1 mT
|
0.09 kg / 0.20 lbs
88.5 g / 0.9 N
|
słaby uchwyt |
| 5 mm |
345 Gs
34.5 mT
|
0.02 kg / 0.04 lbs
20.3 g / 0.2 N
|
słaby uchwyt |
| 10 mm |
101 Gs
10.1 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 20x3x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 20x3x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.54 lbs
699.0 g / 6.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 20x3x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 lbs
582.5 g / 5.7 N
|
| 2 mm |
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
| 3 mm |
|
1.75 kg / 3.85 lbs
1747.5 g / 17.1 N
|
| 5 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 10 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 11 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 12 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 20x3x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
OK |
| 40 °C | -2.2% |
2.28 kg / 5.02 lbs
2278.7 g / 22.4 N
|
OK |
| 60 °C | -4.4% |
2.23 kg / 4.91 lbs
2227.5 g / 21.9 N
|
|
| 80 °C | -6.6% |
2.18 kg / 4.80 lbs
2176.2 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.66 kg / 3.66 lbs
1659.0 g / 16.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 20x3x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.06 kg / 11.17 lbs
4 866 Gs
|
0.76 kg / 1.67 lbs
760 g / 7.5 N
|
N/A |
| 1 mm |
3.01 kg / 6.64 lbs
5 705 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.97 lbs
~0 Gs
|
| 2 mm |
1.64 kg / 3.61 lbs
4 205 Gs
|
0.25 kg / 0.54 lbs
245 g / 2.4 N
|
1.47 kg / 3.24 lbs
~0 Gs
|
| 3 mm |
0.89 kg / 1.97 lbs
3 106 Gs
|
0.13 kg / 0.29 lbs
134 g / 1.3 N
|
0.80 kg / 1.77 lbs
~0 Gs
|
| 5 mm |
0.31 kg / 0.67 lbs
1 816 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.4 N
|
0.27 kg / 0.61 lbs
~0 Gs
|
| 10 mm |
0.04 kg / 0.10 lbs
690 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
202 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 20x3x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 20x3x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
51.34 km/h
(14.26 m/s)
|
0.09 J | |
| 30 mm |
88.88 km/h
(24.69 m/s)
|
0.27 J | |
| 50 mm |
114.74 km/h
(31.87 m/s)
|
0.46 J | |
| 100 mm |
162.27 km/h
(45.08 m/s)
|
0.91 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 20x3x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 20x3x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 748 Mx | 17.5 µWb |
| Współczynnik Pc | 0.32 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 20x3x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.33 kg | Standard |
| Woda (dno rzeki) |
2.67 kg
(+0.34 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.32
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Maksymalny udźwig magnesu – od czego zależy?
- z zastosowaniem podłoża ze stali niskowęglowej, która służy jako element zamykający obwód
- o przekroju wynoszącej minimum 10 mm
- o wypolerowanej powierzchni kontaktu
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Dystans – obecność ciała obcego (rdza, taśma, szczelina) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
To nie jest zabawka
Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Uszkodzenia czujników
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Temperatura pracy
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Uczulenie na powłokę
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Kruchość materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Poważne obrażenia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
