MPL 20x3x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020130
GTIN/EAN: 5906301811367
Długość
20 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.33 kg / 22.90 N
Indukcja magnetyczna
370.68 mT / 3707 Gs
Powłoka
[NiCuNi] nikiel
0.394 ZŁ z VAT / szt. + cena za transport
0.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo pisz poprzez
formularz zgłoszeniowy
na stronie kontakt.
Właściwości i wygląd magnesu skontrolujesz u nas w
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane - MPL 20x3x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x3x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020130 |
| GTIN/EAN | 5906301811367 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.33 kg / 22.90 N |
| Indukcja magnetyczna ~ ? | 370.68 mT / 3707 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Poniższe informacje są rezultat analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 20x3x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3700 Gs
370.0 mT
|
2.33 kg / 2330.0 g
22.9 N
|
średnie ryzyko |
| 1 mm |
2103 Gs
210.3 mT
|
0.75 kg / 752.3 g
7.4 N
|
bezpieczny |
| 2 mm |
1172 Gs
117.2 mT
|
0.23 kg / 233.7 g
2.3 N
|
bezpieczny |
| 3 mm |
721 Gs
72.1 mT
|
0.09 kg / 88.5 g
0.9 N
|
bezpieczny |
| 5 mm |
345 Gs
34.5 mT
|
0.02 kg / 20.3 g
0.2 N
|
bezpieczny |
| 10 mm |
101 Gs
10.1 mT
|
0.00 kg / 1.7 g
0.0 N
|
bezpieczny |
| 15 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 20 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 20x3x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.47 kg / 466.0 g
4.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 20x3x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 699.0 g
6.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.47 kg / 466.0 g
4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 233.0 g
2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.17 kg / 1165.0 g
11.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 20x3x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 233.0 g
2.3 N
|
| 1 mm |
|
0.58 kg / 582.5 g
5.7 N
|
| 2 mm |
|
1.17 kg / 1165.0 g
11.4 N
|
| 5 mm |
|
2.33 kg / 2330.0 g
22.9 N
|
| 10 mm |
|
2.33 kg / 2330.0 g
22.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 20x3x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.33 kg / 2330.0 g
22.9 N
|
OK |
| 40 °C | -2.2% |
2.28 kg / 2278.7 g
22.4 N
|
OK |
| 60 °C | -4.4% |
2.23 kg / 2227.5 g
21.9 N
|
|
| 80 °C | -6.6% |
2.18 kg / 2176.2 g
21.3 N
|
|
| 100 °C | -28.8% |
1.66 kg / 1659.0 g
16.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 20x3x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.06 kg / 5065 g
49.7 N
4 866 Gs
|
N/A |
| 1 mm |
3.01 kg / 3010 g
29.5 N
5 705 Gs
|
2.71 kg / 2709 g
26.6 N
~0 Gs
|
| 2 mm |
1.64 kg / 1635 g
16.0 N
4 205 Gs
|
1.47 kg / 1472 g
14.4 N
~0 Gs
|
| 3 mm |
0.89 kg / 892 g
8.8 N
3 106 Gs
|
0.80 kg / 803 g
7.9 N
~0 Gs
|
| 5 mm |
0.31 kg / 305 g
3.0 N
1 816 Gs
|
0.27 kg / 275 g
2.7 N
~0 Gs
|
| 10 mm |
0.04 kg / 44 g
0.4 N
690 Gs
|
0.04 kg / 40 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
202 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
24 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 20x3x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x3x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
51.34 km/h
(14.26 m/s)
|
0.09 J | |
| 30 mm |
88.88 km/h
(24.69 m/s)
|
0.27 J | |
| 50 mm |
114.74 km/h
(31.87 m/s)
|
0.46 J | |
| 100 mm |
162.27 km/h
(45.08 m/s)
|
0.91 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x3x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 20x3x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 748 Mx | 17.5 µWb |
| Współczynnik Pc | 0.32 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 20x3x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.33 kg | Standard |
| Woda (dno rzeki) |
2.67 kg
(+0.34 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.32
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się gładkością
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje siłę trzymania.
Ostrzeżenia
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Trwała utrata siły
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Alergia na nikiel
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Tylko dla dorosłych
Magnesy neodymowe nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Ostrożność wymagana
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Karty i dyski
Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Nie wierć w magnesach
Pył powstający podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
