MPL 20x3x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020130
GTIN/EAN: 5906301811367
Długość
20 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.33 kg / 22.90 N
Indukcja magnetyczna
370.68 mT / 3707 Gs
Powłoka
[NiCuNi] nikiel
0.394 ZŁ z VAT / szt. + cena za transport
0.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie pisz poprzez
formularz
w sekcji kontakt.
Parametry a także formę magnesów neodymowych obliczysz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MPL 20x3x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x3x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020130 |
| GTIN/EAN | 5906301811367 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.33 kg / 22.90 N |
| Indukcja magnetyczna ~ ? | 370.68 mT / 3707 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Niniejsze dane są rezultat analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MPL 20x3x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3700 Gs
370.0 mT
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
mocny |
| 1 mm |
2103 Gs
210.3 mT
|
0.75 kg / 1.66 lbs
752.3 g / 7.4 N
|
słaby uchwyt |
| 2 mm |
1172 Gs
117.2 mT
|
0.23 kg / 0.52 lbs
233.7 g / 2.3 N
|
słaby uchwyt |
| 3 mm |
721 Gs
72.1 mT
|
0.09 kg / 0.20 lbs
88.5 g / 0.9 N
|
słaby uchwyt |
| 5 mm |
345 Gs
34.5 mT
|
0.02 kg / 0.04 lbs
20.3 g / 0.2 N
|
słaby uchwyt |
| 10 mm |
101 Gs
10.1 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 20x3x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 20x3x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.54 lbs
699.0 g / 6.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 20x3x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 lbs
582.5 g / 5.7 N
|
| 2 mm |
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
| 3 mm |
|
1.75 kg / 3.85 lbs
1747.5 g / 17.1 N
|
| 5 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 10 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 11 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 12 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 20x3x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
OK |
| 40 °C | -2.2% |
2.28 kg / 5.02 lbs
2278.7 g / 22.4 N
|
OK |
| 60 °C | -4.4% |
2.23 kg / 4.91 lbs
2227.5 g / 21.9 N
|
|
| 80 °C | -6.6% |
2.18 kg / 4.80 lbs
2176.2 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.66 kg / 3.66 lbs
1659.0 g / 16.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 20x3x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.06 kg / 11.17 lbs
4 866 Gs
|
0.76 kg / 1.67 lbs
760 g / 7.5 N
|
N/A |
| 1 mm |
3.01 kg / 6.64 lbs
5 705 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.97 lbs
~0 Gs
|
| 2 mm |
1.64 kg / 3.61 lbs
4 205 Gs
|
0.25 kg / 0.54 lbs
245 g / 2.4 N
|
1.47 kg / 3.24 lbs
~0 Gs
|
| 3 mm |
0.89 kg / 1.97 lbs
3 106 Gs
|
0.13 kg / 0.29 lbs
134 g / 1.3 N
|
0.80 kg / 1.77 lbs
~0 Gs
|
| 5 mm |
0.31 kg / 0.67 lbs
1 816 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.4 N
|
0.27 kg / 0.61 lbs
~0 Gs
|
| 10 mm |
0.04 kg / 0.10 lbs
690 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
202 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 20x3x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 20x3x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
51.34 km/h
(14.26 m/s)
|
0.09 J | |
| 30 mm |
88.88 km/h
(24.69 m/s)
|
0.27 J | |
| 50 mm |
114.74 km/h
(31.87 m/s)
|
0.46 J | |
| 100 mm |
162.27 km/h
(45.08 m/s)
|
0.91 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 20x3x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 20x3x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 748 Mx | 17.5 µWb |
| Współczynnik Pc | 0.32 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 20x3x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.33 kg | Standard |
| Woda (dno rzeki) |
2.67 kg
(+0.34 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ułamek siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.32
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z powierzchnią oczyszczoną i gładką
- przy bezpośrednim styku (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Poważne obrażenia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Nie lekceważ mocy
Używaj magnesy świadomie. Ich ogromna siła może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Łamliwość magnesów
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Zakaz zabawy
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Uszkodzenia czujników
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Dla uczulonych
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
