MPL 20x5x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020131
GTIN: 5906301811374
Długość
20 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.46 kg / 33.96 N
Indukcja magnetyczna
358.88 mT / 3589 Gs
Powłoka
[NiCuNi] nikiel
1.058 ZŁ z VAT / szt. + cena za transport
0.860 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz frasunek zakupowy?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie pisz za pomocą
formularz
przez naszą stronę.
Siłę oraz formę elementów magnetycznych testujesz dzięki naszemu
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 20x5x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 20x5x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020131 |
| GTIN | 5906301811374 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.46 kg / 33.96 N |
| Indukcja magnetyczna ~ ? | 358.88 mT / 3589 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Poniższe informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
MPL 20x5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3585 Gs
358.5 mT
|
3.46 kg / 3460.0 g
33.9 N
|
mocny |
| 1 mm |
2619 Gs
261.9 mT
|
1.85 kg / 1846.6 g
18.1 N
|
bezpieczny |
| 2 mm |
1818 Gs
181.8 mT
|
0.89 kg / 889.8 g
8.7 N
|
bezpieczny |
| 3 mm |
1279 Gs
127.9 mT
|
0.44 kg / 440.2 g
4.3 N
|
bezpieczny |
| 5 mm |
696 Gs
69.6 mT
|
0.13 kg / 130.6 g
1.3 N
|
bezpieczny |
| 10 mm |
225 Gs
22.5 mT
|
0.01 kg / 13.6 g
0.1 N
|
bezpieczny |
| 15 mm |
97 Gs
9.7 mT
|
0.00 kg / 2.5 g
0.0 N
|
bezpieczny |
| 20 mm |
49 Gs
4.9 mT
|
0.00 kg / 0.6 g
0.0 N
|
bezpieczny |
| 30 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 20x5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 692.0 g
6.8 N
|
| 1 mm | Stal (~0.2) |
0.37 kg / 370.0 g
3.6 N
|
| 2 mm | Stal (~0.2) |
0.18 kg / 178.0 g
1.7 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 88.0 g
0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 20x5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 1038.0 g
10.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 692.0 g
6.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 346.0 g
3.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 1730.0 g
17.0 N
|
MPL 20x5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 346.0 g
3.4 N
|
| 1 mm |
|
0.87 kg / 865.0 g
8.5 N
|
| 2 mm |
|
1.73 kg / 1730.0 g
17.0 N
|
| 5 mm |
|
3.46 kg / 3460.0 g
33.9 N
|
| 10 mm |
|
3.46 kg / 3460.0 g
33.9 N
|
MPL 20x5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.46 kg / 3460.0 g
33.9 N
|
OK |
| 40 °C | -2.2% |
3.38 kg / 3383.9 g
33.2 N
|
OK |
| 60 °C | -4.4% |
3.31 kg / 3307.8 g
32.4 N
|
|
| 80 °C | -6.6% |
3.23 kg / 3231.6 g
31.7 N
|
|
| 100 °C | -28.8% |
2.46 kg / 2463.5 g
24.2 N
|
MPL 20x5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
7.92 kg / 7924 g
77.7 N
4 860 Gs
|
N/A |
| 1 mm |
5.94 kg / 5942 g
58.3 N
6 209 Gs
|
5.35 kg / 5348 g
52.5 N
~0 Gs
|
| 2 mm |
4.23 kg / 4229 g
41.5 N
5 238 Gs
|
3.81 kg / 3806 g
37.3 N
~0 Gs
|
| 3 mm |
2.94 kg / 2942 g
28.9 N
4 369 Gs
|
2.65 kg / 2647 g
26.0 N
~0 Gs
|
| 5 mm |
1.42 kg / 1423 g
14.0 N
3 039 Gs
|
1.28 kg / 1281 g
12.6 N
~0 Gs
|
| 10 mm |
0.30 kg / 299 g
2.9 N
1 393 Gs
|
0.27 kg / 269 g
2.6 N
~0 Gs
|
| 20 mm |
0.03 kg / 31 g
0.3 N
450 Gs
|
0.03 kg / 28 g
0.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
56 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 20x5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 20x5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
39.65 km/h
(11.01 m/s)
|
0.14 J | |
| 30 mm |
68.50 km/h
(19.03 m/s)
|
0.41 J | |
| 50 mm |
88.43 km/h
(24.56 m/s)
|
0.68 J | |
| 100 mm |
125.06 km/h
(34.74 m/s)
|
1.36 J |
MPL 20x5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 20x5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 197 Mx | 32.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
MPL 20x5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.46 kg | Standard |
| Woda (dno rzeki) |
3.96 kg
(+0.50 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
Inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość to min. 10 mm
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – obecność ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda płyta nie przyjmuje całego pola, przez co część mocy jest tracona w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza udźwig.
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Interferencja medyczna
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać pracę implantu.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Ryzyko połknięcia
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Przegrzanie magnesu
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Alergia na nikiel
Niektóre osoby wykazuje uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może skutkować silną reakcję alergiczną. Zalecamy stosowanie rękawic bezlateksowych.
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
