MPL 200x30x30 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020125
GTIN/EAN: 5906301811312
Długość
200 mm [±0,1 mm]
Szerokość
30 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1350 g
Kierunek magnesowania
↑ osiowy
Udźwig
287.38 kg / 2819.19 N
Indukcja magnetyczna
445.15 mT / 4451 Gs
Powłoka
[NiCuNi] nikiel
563.28 ZŁ z VAT / szt. + cena za transport
457.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub skontaktuj się korzystając z
formularz
przez naszą stronę.
Parametry i kształt magnesu zobaczysz u nas w
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MPL 200x30x30 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 200x30x30 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020125 |
| GTIN/EAN | 5906301811312 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 200 mm [±0,1 mm] |
| Szerokość | 30 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1350 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 287.38 kg / 2819.19 N |
| Indukcja magnetyczna ~ ? | 445.15 mT / 4451 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Przedstawione dane są wynik symulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MPL 200x30x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4451 Gs
445.1 mT
|
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
krytyczny poziom |
| 1 mm |
4241 Gs
424.1 mT
|
260.91 kg / 575.21 lbs
260910.0 g / 2559.5 N
|
krytyczny poziom |
| 2 mm |
4028 Gs
402.8 mT
|
235.43 kg / 519.04 lbs
235433.0 g / 2309.6 N
|
krytyczny poziom |
| 3 mm |
3818 Gs
381.8 mT
|
211.49 kg / 466.26 lbs
211490.2 g / 2074.7 N
|
krytyczny poziom |
| 5 mm |
3412 Gs
341.2 mT
|
168.87 kg / 372.30 lbs
168870.4 g / 1656.6 N
|
krytyczny poziom |
| 10 mm |
2539 Gs
253.9 mT
|
93.54 kg / 206.22 lbs
93539.2 g / 917.6 N
|
krytyczny poziom |
| 15 mm |
1902 Gs
190.2 mT
|
52.48 kg / 115.70 lbs
52481.2 g / 514.8 N
|
krytyczny poziom |
| 20 mm |
1457 Gs
145.7 mT
|
30.79 kg / 67.88 lbs
30789.8 g / 302.0 N
|
krytyczny poziom |
| 30 mm |
920 Gs
92.0 mT
|
12.29 kg / 27.09 lbs
12288.2 g / 120.5 N
|
krytyczny poziom |
| 50 mm |
456 Gs
45.6 mT
|
3.02 kg / 6.65 lbs
3016.4 g / 29.6 N
|
mocny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 200x30x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
57.48 kg / 126.71 lbs
57476.0 g / 563.8 N
|
| 1 mm | Stal (~0.2) |
52.18 kg / 115.04 lbs
52182.0 g / 511.9 N
|
| 2 mm | Stal (~0.2) |
47.09 kg / 103.81 lbs
47086.0 g / 461.9 N
|
| 3 mm | Stal (~0.2) |
42.30 kg / 93.25 lbs
42298.0 g / 414.9 N
|
| 5 mm | Stal (~0.2) |
33.77 kg / 74.46 lbs
33774.0 g / 331.3 N
|
| 10 mm | Stal (~0.2) |
18.71 kg / 41.24 lbs
18708.0 g / 183.5 N
|
| 15 mm | Stal (~0.2) |
10.50 kg / 23.14 lbs
10496.0 g / 103.0 N
|
| 20 mm | Stal (~0.2) |
6.16 kg / 13.58 lbs
6158.0 g / 60.4 N
|
| 30 mm | Stal (~0.2) |
2.46 kg / 5.42 lbs
2458.0 g / 24.1 N
|
| 50 mm | Stal (~0.2) |
0.60 kg / 1.33 lbs
604.0 g / 5.9 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 200x30x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
86.21 kg / 190.07 lbs
86214.0 g / 845.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
57.48 kg / 126.71 lbs
57476.0 g / 563.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
28.74 kg / 63.36 lbs
28738.0 g / 281.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
143.69 kg / 316.78 lbs
143690.0 g / 1409.6 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 200x30x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
9.58 kg / 21.12 lbs
9579.3 g / 94.0 N
|
| 1 mm |
|
23.95 kg / 52.80 lbs
23948.3 g / 234.9 N
|
| 2 mm |
|
47.90 kg / 105.59 lbs
47896.7 g / 469.9 N
|
| 3 mm |
|
71.85 kg / 158.39 lbs
71845.0 g / 704.8 N
|
| 5 mm |
|
119.74 kg / 263.98 lbs
119741.7 g / 1174.7 N
|
| 10 mm |
|
239.48 kg / 527.97 lbs
239483.3 g / 2349.3 N
|
| 11 mm |
|
263.43 kg / 580.77 lbs
263431.7 g / 2584.3 N
|
| 12 mm |
|
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 200x30x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
OK |
| 40 °C | -2.2% |
281.06 kg / 619.63 lbs
281057.6 g / 2757.2 N
|
OK |
| 60 °C | -4.4% |
274.74 kg / 605.69 lbs
274735.3 g / 2695.2 N
|
|
| 80 °C | -6.6% |
268.41 kg / 591.75 lbs
268412.9 g / 2633.1 N
|
|
| 100 °C | -28.8% |
204.61 kg / 451.10 lbs
204614.6 g / 2007.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 200x30x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
732.71 kg / 1615.35 lbs
5 371 Gs
|
109.91 kg / 242.30 lbs
109907 g / 1078.2 N
|
N/A |
| 1 mm |
698.96 kg / 1540.95 lbs
8 694 Gs
|
104.84 kg / 231.14 lbs
104845 g / 1028.5 N
|
629.07 kg / 1386.85 lbs
~0 Gs
|
| 2 mm |
665.22 kg / 1466.57 lbs
8 481 Gs
|
99.78 kg / 219.99 lbs
99784 g / 978.9 N
|
598.70 kg / 1319.91 lbs
~0 Gs
|
| 3 mm |
632.29 kg / 1393.97 lbs
8 269 Gs
|
94.84 kg / 209.10 lbs
94844 g / 930.4 N
|
569.07 kg / 1254.57 lbs
~0 Gs
|
| 5 mm |
569.22 kg / 1254.92 lbs
7 846 Gs
|
85.38 kg / 188.24 lbs
85383 g / 837.6 N
|
512.30 kg / 1129.42 lbs
~0 Gs
|
| 10 mm |
430.56 kg / 949.22 lbs
6 823 Gs
|
64.58 kg / 142.38 lbs
64584 g / 633.6 N
|
387.50 kg / 854.29 lbs
~0 Gs
|
| 20 mm |
238.49 kg / 525.78 lbs
5 078 Gs
|
35.77 kg / 78.87 lbs
35774 g / 350.9 N
|
214.64 kg / 473.20 lbs
~0 Gs
|
| 50 mm |
48.45 kg / 106.82 lbs
2 289 Gs
|
7.27 kg / 16.02 lbs
7268 g / 71.3 N
|
43.61 kg / 96.13 lbs
~0 Gs
|
| 60 mm |
31.33 kg / 69.07 lbs
1 841 Gs
|
4.70 kg / 10.36 lbs
4700 g / 46.1 N
|
28.20 kg / 62.16 lbs
~0 Gs
|
| 70 mm |
21.09 kg / 46.49 lbs
1 510 Gs
|
3.16 kg / 6.97 lbs
3163 g / 31.0 N
|
18.98 kg / 41.84 lbs
~0 Gs
|
| 80 mm |
14.67 kg / 32.35 lbs
1 260 Gs
|
2.20 kg / 4.85 lbs
2201 g / 21.6 N
|
13.21 kg / 29.12 lbs
~0 Gs
|
| 90 mm |
10.50 kg / 23.15 lbs
1 066 Gs
|
1.58 kg / 3.47 lbs
1575 g / 15.5 N
|
9.45 kg / 20.83 lbs
~0 Gs
|
| 100 mm |
7.69 kg / 16.95 lbs
912 Gs
|
1.15 kg / 2.54 lbs
1154 g / 11.3 N
|
6.92 kg / 15.26 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 200x30x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 39.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 30.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 18.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 200x30x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
15.86 J | |
| 30 mm |
26.16 km/h
(7.27 m/s)
|
35.64 J | |
| 50 mm |
33.12 km/h
(9.20 m/s)
|
57.12 J | |
| 100 mm |
46.56 km/h
(12.93 m/s)
|
112.90 J |
Tabela 9: Odporność na korozję
MPL 200x30x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 200x30x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 221 734 Mx | 2217.3 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 200x30x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 287.38 kg | Standard |
| Woda (dno rzeki) |
329.05 kg
(+41.67 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - uchwyty magnetyczne do poszukiwań
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają estetyczny, błyszczący wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z powierzchnią oczyszczoną i gładką
- przy zerowej szczelinie (brak powłok)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Uwaga na odpryski
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Ogromna siła
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Ochrona dłoni
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ryzyko uczulenia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Interferencja medyczna
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Uszkodzenia czujników
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Zagrożenie dla najmłodszych
Bezwzględnie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Pole magnetyczne a elektronika
Ekstremalne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
