MPL 17x17x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020124
GTIN/EAN: 5906301811305
Długość
17 mm [±0,1 mm]
Szerokość
17 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.22 kg / 31.54 N
Indukcja magnetyczna
187.48 mT / 1875 Gs
Powłoka
[NiCuNi] nikiel
4.71 ZŁ z VAT / szt. + cena za transport
3.83 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub napisz za pomocą
nasz formularz online
na naszej stronie.
Udźwig a także wygląd magnesu neodymowego skontrolujesz u nas w
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja produktu - MPL 17x17x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 17x17x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020124 |
| GTIN/EAN | 5906301811305 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 17 mm [±0,1 mm] |
| Szerokość | 17 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.22 kg / 31.54 N |
| Indukcja magnetyczna ~ ? | 187.48 mT / 1875 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe informacje stanowią wynik analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 17x17x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1874 Gs
187.4 mT
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
mocny |
| 1 mm |
1761 Gs
176.1 mT
|
2.84 kg / 6.27 lbs
2842.9 g / 27.9 N
|
mocny |
| 2 mm |
1610 Gs
161.0 mT
|
2.38 kg / 5.24 lbs
2376.8 g / 23.3 N
|
mocny |
| 3 mm |
1440 Gs
144.0 mT
|
1.90 kg / 4.19 lbs
1901.0 g / 18.6 N
|
słaby uchwyt |
| 5 mm |
1099 Gs
109.9 mT
|
1.11 kg / 2.44 lbs
1107.5 g / 10.9 N
|
słaby uchwyt |
| 10 mm |
508 Gs
50.8 mT
|
0.24 kg / 0.52 lbs
236.4 g / 2.3 N
|
słaby uchwyt |
| 15 mm |
245 Gs
24.5 mT
|
0.06 kg / 0.12 lbs
55.2 g / 0.5 N
|
słaby uchwyt |
| 20 mm |
131 Gs
13.1 mT
|
0.02 kg / 0.03 lbs
15.7 g / 0.2 N
|
słaby uchwyt |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 17x17x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.42 lbs
644.0 g / 6.3 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
568.0 g / 5.6 N
|
| 2 mm | Stal (~0.2) |
0.48 kg / 1.05 lbs
476.0 g / 4.7 N
|
| 3 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| 5 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
222.0 g / 2.2 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 17x17x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.42 lbs
644.0 g / 6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.71 lbs
322.0 g / 3.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.61 kg / 3.55 lbs
1610.0 g / 15.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 17x17x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.71 lbs
322.0 g / 3.2 N
|
| 1 mm |
|
0.81 kg / 1.77 lbs
805.0 g / 7.9 N
|
| 2 mm |
|
1.61 kg / 3.55 lbs
1610.0 g / 15.8 N
|
| 3 mm |
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
| 5 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 10 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 11 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 12 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 17x17x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
OK |
| 40 °C | -2.2% |
3.15 kg / 6.94 lbs
3149.2 g / 30.9 N
|
OK |
| 60 °C | -4.4% |
3.08 kg / 6.79 lbs
3078.3 g / 30.2 N
|
|
| 80 °C | -6.6% |
3.01 kg / 6.63 lbs
3007.5 g / 29.5 N
|
|
| 100 °C | -28.8% |
2.29 kg / 5.05 lbs
2292.6 g / 22.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 17x17x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
6.26 kg / 13.80 lbs
3 313 Gs
|
0.94 kg / 2.07 lbs
939 g / 9.2 N
|
N/A |
| 1 mm |
5.93 kg / 13.07 lbs
3 648 Gs
|
0.89 kg / 1.96 lbs
889 g / 8.7 N
|
5.33 kg / 11.76 lbs
~0 Gs
|
| 2 mm |
5.53 kg / 12.19 lbs
3 523 Gs
|
0.83 kg / 1.83 lbs
829 g / 8.1 N
|
4.97 kg / 10.97 lbs
~0 Gs
|
| 3 mm |
5.08 kg / 11.21 lbs
3 379 Gs
|
0.76 kg / 1.68 lbs
763 g / 7.5 N
|
4.58 kg / 10.09 lbs
~0 Gs
|
| 5 mm |
4.15 kg / 9.16 lbs
3 053 Gs
|
0.62 kg / 1.37 lbs
623 g / 6.1 N
|
3.74 kg / 8.24 lbs
~0 Gs
|
| 10 mm |
2.15 kg / 4.75 lbs
2 199 Gs
|
0.32 kg / 0.71 lbs
323 g / 3.2 N
|
1.94 kg / 4.27 lbs
~0 Gs
|
| 20 mm |
0.46 kg / 1.01 lbs
1 016 Gs
|
0.07 kg / 0.15 lbs
69 g / 0.7 N
|
0.41 kg / 0.91 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
153 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
64 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 17x17x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 17x17x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.45 km/h
(6.52 m/s)
|
0.14 J | |
| 30 mm |
38.89 km/h
(10.80 m/s)
|
0.38 J | |
| 50 mm |
50.19 km/h
(13.94 m/s)
|
0.63 J | |
| 100 mm |
70.98 km/h
(19.72 m/s)
|
1.26 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 17x17x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 17x17x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 509 Mx | 65.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 17x17x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.22 kg | Standard |
| Woda (dno rzeki) |
3.69 kg
(+0.47 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi zaledwie ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- z użyciem blachy ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- o przekroju przynajmniej 10 mm
- z powierzchnią wolną od rys
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Reakcje alergiczne
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Temperatura pracy
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ryzyko połknięcia
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Ostrzeżenie dla sercowców
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zatrzymać pracę implantu.
Łatwopalność
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Uwaga na odpryski
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
