MPL 17x17x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020124
GTIN/EAN: 5906301811305
Długość
17 mm [±0,1 mm]
Szerokość
17 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.22 kg / 31.54 N
Indukcja magnetyczna
187.48 mT / 1875 Gs
Powłoka
[NiCuNi] nikiel
4.71 ZŁ z VAT / szt. + cena za transport
3.83 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość poprzez
formularz kontaktowy
na naszej stronie.
Parametry oraz wygląd elementów magnetycznych skontrolujesz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna - MPL 17x17x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 17x17x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020124 |
| GTIN/EAN | 5906301811305 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 17 mm [±0,1 mm] |
| Szerokość | 17 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.22 kg / 31.54 N |
| Indukcja magnetyczna ~ ? | 187.48 mT / 1875 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Przedstawione informacje stanowią wynik kalkulacji matematycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 17x17x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1874 Gs
187.4 mT
|
3.22 kg / 3220.0 g
31.6 N
|
średnie ryzyko |
| 1 mm |
1761 Gs
176.1 mT
|
2.84 kg / 2842.9 g
27.9 N
|
średnie ryzyko |
| 2 mm |
1610 Gs
161.0 mT
|
2.38 kg / 2376.8 g
23.3 N
|
średnie ryzyko |
| 3 mm |
1440 Gs
144.0 mT
|
1.90 kg / 1901.0 g
18.6 N
|
słaby uchwyt |
| 5 mm |
1099 Gs
109.9 mT
|
1.11 kg / 1107.5 g
10.9 N
|
słaby uchwyt |
| 10 mm |
508 Gs
50.8 mT
|
0.24 kg / 236.4 g
2.3 N
|
słaby uchwyt |
| 15 mm |
245 Gs
24.5 mT
|
0.06 kg / 55.2 g
0.5 N
|
słaby uchwyt |
| 20 mm |
131 Gs
13.1 mT
|
0.02 kg / 15.7 g
0.2 N
|
słaby uchwyt |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 2.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 17x17x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 644.0 g
6.3 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 568.0 g
5.6 N
|
| 2 mm | Stal (~0.2) |
0.48 kg / 476.0 g
4.7 N
|
| 3 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 5 mm | Stal (~0.2) |
0.22 kg / 222.0 g
2.2 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 17x17x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.97 kg / 966.0 g
9.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 644.0 g
6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 322.0 g
3.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.61 kg / 1610.0 g
15.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 17x17x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 322.0 g
3.2 N
|
| 1 mm |
|
0.81 kg / 805.0 g
7.9 N
|
| 2 mm |
|
1.61 kg / 1610.0 g
15.8 N
|
| 5 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
| 10 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 17x17x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.22 kg / 3220.0 g
31.6 N
|
OK |
| 40 °C | -2.2% |
3.15 kg / 3149.2 g
30.9 N
|
OK |
| 60 °C | -4.4% |
3.08 kg / 3078.3 g
30.2 N
|
|
| 80 °C | -6.6% |
3.01 kg / 3007.5 g
29.5 N
|
|
| 100 °C | -28.8% |
2.29 kg / 2292.6 g
22.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 17x17x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.26 kg / 6260 g
61.4 N
3 313 Gs
|
N/A |
| 1 mm |
5.93 kg / 5928 g
58.2 N
3 648 Gs
|
5.33 kg / 5335 g
52.3 N
~0 Gs
|
| 2 mm |
5.53 kg / 5527 g
54.2 N
3 523 Gs
|
4.97 kg / 4974 g
48.8 N
~0 Gs
|
| 3 mm |
5.08 kg / 5085 g
49.9 N
3 379 Gs
|
4.58 kg / 4576 g
44.9 N
~0 Gs
|
| 5 mm |
4.15 kg / 4153 g
40.7 N
3 053 Gs
|
3.74 kg / 3738 g
36.7 N
~0 Gs
|
| 10 mm |
2.15 kg / 2153 g
21.1 N
2 199 Gs
|
1.94 kg / 1938 g
19.0 N
~0 Gs
|
| 20 mm |
0.46 kg / 460 g
4.5 N
1 016 Gs
|
0.41 kg / 414 g
4.1 N
~0 Gs
|
| 50 mm |
0.01 kg / 10 g
0.1 N
153 Gs
|
0.01 kg / 9 g
0.1 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 17x17x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 17x17x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.45 km/h
(6.52 m/s)
|
0.14 J | |
| 30 mm |
38.89 km/h
(10.80 m/s)
|
0.38 J | |
| 50 mm |
50.19 km/h
(13.94 m/s)
|
0.63 J | |
| 100 mm |
70.98 km/h
(19.72 m/s)
|
1.26 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 17x17x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 17x17x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 509 Mx | 65.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 17x17x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.22 kg | Standard |
| Woda (dno rzeki) |
3.69 kg
(+0.47 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (bez powłok)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – za chuda stal nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig określano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Wpływ na smartfony
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Przegrzanie magnesu
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Chronić przed dziećmi
Silne magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Nie zbliżaj do komputera
Potężne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Potężne pole
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
