MPL 17x17x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020124
GTIN: 5906301811305
Długość
17 mm [±0,1 mm]
Szerokość
17 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.22 kg / 31.54 N
Indukcja magnetyczna
187.48 mT / 1875 Gs
Powłoka
[NiCuNi] nikiel
4.71 ZŁ z VAT / szt. + cena za transport
3.83 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz frasunek zakupowy?
Zadzwoń i zapytaj
+48 888 99 98 98
albo napisz przez
formularz
na stronie kontaktowej.
Moc a także wygląd elementów magnetycznych skontrolujesz dzięki naszemu
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 17x17x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 17x17x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020124 |
| GTIN | 5906301811305 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 17 mm [±0,1 mm] |
| Szerokość | 17 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.22 kg / 31.54 N |
| Indukcja magnetyczna ~ ? | 187.48 mT / 1875 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Niniejsze informacje są bezpośredni efekt symulacji inżynierskiej. Wyniki oparte są na algorytmach dla klasy NdFeB. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
MPL 17x17x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1874 Gs
187.4 mT
|
3.22 kg / 3220.0 g
31.6 N
|
średnie ryzyko |
| 1 mm |
1761 Gs
176.1 mT
|
2.84 kg / 2842.9 g
27.9 N
|
średnie ryzyko |
| 2 mm |
1610 Gs
161.0 mT
|
2.38 kg / 2376.8 g
23.3 N
|
średnie ryzyko |
| 3 mm |
1440 Gs
144.0 mT
|
1.90 kg / 1901.0 g
18.6 N
|
niskie ryzyko |
| 5 mm |
1099 Gs
109.9 mT
|
1.11 kg / 1107.5 g
10.9 N
|
niskie ryzyko |
| 10 mm |
508 Gs
50.8 mT
|
0.24 kg / 236.4 g
2.3 N
|
niskie ryzyko |
| 15 mm |
245 Gs
24.5 mT
|
0.06 kg / 55.2 g
0.5 N
|
niskie ryzyko |
| 20 mm |
131 Gs
13.1 mT
|
0.02 kg / 15.7 g
0.2 N
|
niskie ryzyko |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 2.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
MPL 17x17x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 644.0 g
6.3 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 568.0 g
5.6 N
|
| 2 mm | Stal (~0.2) |
0.48 kg / 476.0 g
4.7 N
|
| 3 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 5 mm | Stal (~0.2) |
0.22 kg / 222.0 g
2.2 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 17x17x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.97 kg / 966.0 g
9.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 644.0 g
6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 322.0 g
3.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.61 kg / 1610.0 g
15.8 N
|
MPL 17x17x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 322.0 g
3.2 N
|
| 1 mm |
|
0.81 kg / 805.0 g
7.9 N
|
| 2 mm |
|
1.61 kg / 1610.0 g
15.8 N
|
| 5 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
| 10 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
MPL 17x17x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.22 kg / 3220.0 g
31.6 N
|
OK |
| 40 °C | -2.2% |
3.15 kg / 3149.2 g
30.9 N
|
OK |
| 60 °C | -4.4% |
3.08 kg / 3078.3 g
30.2 N
|
|
| 80 °C | -6.6% |
3.01 kg / 3007.5 g
29.5 N
|
|
| 100 °C | -28.8% |
2.29 kg / 2292.6 g
22.5 N
|
MPL 17x17x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.26 kg / 6260 g
61.4 N
3 313 Gs
|
N/A |
| 1 mm |
5.93 kg / 5928 g
58.2 N
3 648 Gs
|
5.33 kg / 5335 g
52.3 N
~0 Gs
|
| 2 mm |
5.53 kg / 5527 g
54.2 N
3 523 Gs
|
4.97 kg / 4974 g
48.8 N
~0 Gs
|
| 3 mm |
5.08 kg / 5085 g
49.9 N
3 379 Gs
|
4.58 kg / 4576 g
44.9 N
~0 Gs
|
| 5 mm |
4.15 kg / 4153 g
40.7 N
3 053 Gs
|
3.74 kg / 3738 g
36.7 N
~0 Gs
|
| 10 mm |
2.15 kg / 2153 g
21.1 N
2 199 Gs
|
1.94 kg / 1938 g
19.0 N
~0 Gs
|
| 20 mm |
0.46 kg / 460 g
4.5 N
1 016 Gs
|
0.41 kg / 414 g
4.1 N
~0 Gs
|
| 50 mm |
0.01 kg / 10 g
0.1 N
153 Gs
|
0.01 kg / 9 g
0.1 N
~0 Gs
|
MPL 17x17x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 17x17x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.45 km/h
(6.52 m/s)
|
0.14 J | |
| 30 mm |
38.89 km/h
(10.80 m/s)
|
0.38 J | |
| 50 mm |
50.19 km/h
(13.94 m/s)
|
0.63 J | |
| 100 mm |
70.98 km/h
(19.72 m/s)
|
1.26 J |
MPL 17x17x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 17x17x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 509 Mx | 65.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
MPL 17x17x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.22 kg | Standard |
| Woda (dno rzeki) |
3.69 kg
(+0.47 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne propozycje
Zalety oraz wady neodymowych magnesów NdFeB.
Oprócz niezwykłą mocą, magnesy typu NdFeB oferują szereg innych zalet::
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Maksymalna siła przyciągania magnesu – co się na to składa?
Parametr siły jest wartością teoretyczną maksymalną przeprowadzonego w warunkach wzorcowych:
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- charakteryzującej się gładkością
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
Należy pamiętać, że siła w aplikacji może być niższe w zależności od następujących czynników, zaczynając od najistotniejszych:
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża nośność.
Zalety oraz wady neodymowych magnesów NdFeB.
Oprócz niezwykłą mocą, magnesy typu NdFeB oferują szereg innych zalet::
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Maksymalna siła przyciągania magnesu – co się na to składa?
Parametr siły jest wartością teoretyczną maksymalną przeprowadzonego w warunkach wzorcowych:
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- charakteryzującej się gładkością
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
Należy pamiętać, że siła w aplikacji może być niższe w zależności od następujących czynników, zaczynając od najistotniejszych:
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Ryzyko pożaru
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie dla najmłodszych
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Siła neodymu
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Smartfony i tablety
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Ryzyko złamań
Duże magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Przegrzanie magnesu
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Nie zbliżaj do komputera
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Dla uczulonych
Niektóre osoby posiada nadwrażliwość na nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Wskazane jest używanie rękawic bezlateksowych.
Ostrzeżenie dla sercowców
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Zagrożenie!
Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
