magnesy neodymowe

Magnesy neodymowe Nd2Fe14B - nasza oferta. Praktycznie wszystkie neodymowe magnesy, które posiadamy na stanie magazynowym, znajdują się na wykazie poniżej zobacz cennik magnesów

magnesy dla poszukiwaczy F 400 GOLD z mocnym uchem bocznym i liną

Gdzie zakupić mocny UM neodymowy magnes do poszukiwań? Uchwyty z magnesów w solidnej i szczelnej obudowie nadają się wyśmienicie do używania w niedogodnych, ciężkich warunkach pogodowych, między innymi w deszczu i podczas śniegu poznaj ofertę

magnesy z uchwytem

Uchwyty magnetyczne mogą być stosowane do ułatwienia procesów produkcyjnych, eksploracji dna morza lub do poszukiwania meteorów ze złota. Mocowania to śruba 3x [M10] duży udźwig sprawdź...

Obiecujemy wysyłkę zamówienia z magnesami w dzień zlecenia jeżeli zamówienie złożone jest do 14:00 w dni robocze.

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 17x17x3 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020124

GTIN: 5906301811305

5.00

Długość

17 mm [±0,1 mm]

Szerokość

17 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

6.5 g

Kierunek magnesowania

↑ osiowy

Udźwig

3.22 kg / 31.54 N

Indukcja magnetyczna

187.48 mT / 1875 Gs

Powłoka

[NiCuNi] nikiel

4.71 z VAT / szt. + cena za transport

3.83 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
3.83 ZŁ
4.71 ZŁ
cena od 200 szt.
3.60 ZŁ
4.43 ZŁ
cena od 700 szt.
3.37 ZŁ
4.15 ZŁ
Masz frasunek zakupowy?

Zadzwoń i zapytaj +48 888 99 98 98 albo napisz przez formularz na stronie kontaktowej.
Moc a także wygląd elementów magnetycznych skontrolujesz dzięki naszemu modułowym kalkulatorze.

Realizacja tego samego dnia przy zamówieniu do 14:00.

MPL 17x17x3 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka MPL 17x17x3 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020124
GTIN 5906301811305
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 17 mm [±0,1 mm]
Szerokość 17 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 6.5 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 3.22 kg / 31.54 N
Indukcja magnetyczna ~ ? 187.48 mT / 1875 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 17x17x3 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [Min. - Max.] ? 12.2-12.6 kGs
remanencja Br [Min. - Max.] ? 1220-1260 T
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [Min. - Max.] ? 36-38 BH max MGOe
gęstość energii [Min. - Max.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Curie Temperatura TC 312 - 380 °C
Curie Temperatura TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅Cm
Siła wyginania 250 Mpa
Wytrzymałość na ściskanie 1000~1100 Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 106 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu - raport

Niniejsze informacje są bezpośredni efekt symulacji inżynierskiej. Wyniki oparte są na algorytmach dla klasy NdFeB. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 17x17x3 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg) Status ryzyka
0 mm 1874 Gs
187.4 mT
3.22 kg / 3220.0 g
31.6 N
średnie ryzyko
1 mm 1761 Gs
176.1 mT
2.84 kg / 2842.9 g
27.9 N
średnie ryzyko
2 mm 1610 Gs
161.0 mT
2.38 kg / 2376.8 g
23.3 N
średnie ryzyko
3 mm 1440 Gs
144.0 mT
1.90 kg / 1901.0 g
18.6 N
niskie ryzyko
5 mm 1099 Gs
109.9 mT
1.11 kg / 1107.5 g
10.9 N
niskie ryzyko
10 mm 508 Gs
50.8 mT
0.24 kg / 236.4 g
2.3 N
niskie ryzyko
15 mm 245 Gs
24.5 mT
0.06 kg / 55.2 g
0.5 N
niskie ryzyko
20 mm 131 Gs
13.1 mT
0.02 kg / 15.7 g
0.2 N
niskie ryzyko
30 mm 48 Gs
4.8 mT
0.00 kg / 2.1 g
0.0 N
niskie ryzyko
50 mm 12 Gs
1.2 mT
0.00 kg / 0.1 g
0.0 N
niskie ryzyko
Table 2: Równoległa siła zsuwania (pion)
MPL 17x17x3 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)
0 mm Stal (~0.2) 0.64 kg / 644.0 g
6.3 N
1 mm Stal (~0.2) 0.57 kg / 568.0 g
5.6 N
2 mm Stal (~0.2) 0.48 kg / 476.0 g
4.7 N
3 mm Stal (~0.2) 0.38 kg / 380.0 g
3.7 N
5 mm Stal (~0.2) 0.22 kg / 222.0 g
2.2 N
10 mm Stal (~0.2) 0.05 kg / 48.0 g
0.5 N
15 mm Stal (~0.2) 0.01 kg / 12.0 g
0.1 N
20 mm Stal (~0.2) 0.00 kg / 4.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 17x17x3 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.97 kg / 966.0 g
9.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.64 kg / 644.0 g
6.3 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.32 kg / 322.0 g
3.2 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
1.61 kg / 1610.0 g
15.8 N
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 17x17x3 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.32 kg / 322.0 g
3.2 N
1 mm
25%
0.81 kg / 805.0 g
7.9 N
2 mm
50%
1.61 kg / 1610.0 g
15.8 N
5 mm
100%
3.22 kg / 3220.0 g
31.6 N
10 mm
100%
3.22 kg / 3220.0 g
31.6 N
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 17x17x3 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 3.22 kg / 3220.0 g
31.6 N
OK
40 °C -2.2% 3.15 kg / 3149.2 g
30.9 N
OK
60 °C -4.4% 3.08 kg / 3078.3 g
30.2 N
80 °C -6.6% 3.01 kg / 3007.5 g
29.5 N
100 °C -28.8% 2.29 kg / 2292.6 g
22.5 N
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 17x17x3 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 6.26 kg / 6260 g
61.4 N
3 313 Gs
N/A
1 mm 5.93 kg / 5928 g
58.2 N
3 648 Gs
5.33 kg / 5335 g
52.3 N
~0 Gs
2 mm 5.53 kg / 5527 g
54.2 N
3 523 Gs
4.97 kg / 4974 g
48.8 N
~0 Gs
3 mm 5.08 kg / 5085 g
49.9 N
3 379 Gs
4.58 kg / 4576 g
44.9 N
~0 Gs
5 mm 4.15 kg / 4153 g
40.7 N
3 053 Gs
3.74 kg / 3738 g
36.7 N
~0 Gs
10 mm 2.15 kg / 2153 g
21.1 N
2 199 Gs
1.94 kg / 1938 g
19.0 N
~0 Gs
20 mm 0.46 kg / 460 g
4.5 N
1 016 Gs
0.41 kg / 414 g
4.1 N
~0 Gs
50 mm 0.01 kg / 10 g
0.1 N
153 Gs
0.01 kg / 9 g
0.1 N
~0 Gs
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 17x17x3 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 7.0 cm
Implant słuchowy 10 Gs (1.0 mT) 5.5 cm
Czasomierz 20 Gs (2.0 mT) 4.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 3.5 cm
Pilot do auta 50 Gs (5.0 mT) 3.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 17x17x3 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 23.45 km/h
(6.52 m/s)
0.14 J
30 mm 38.89 km/h
(10.80 m/s)
0.38 J
50 mm 50.19 km/h
(13.94 m/s)
0.63 J
100 mm 70.98 km/h
(19.72 m/s)
1.26 J
Tabela 9: Specyfikacja ochrony powierzchni
MPL 17x17x3 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Table 10: Dane elektryczne (Flux)
MPL 17x17x3 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 6 509 Mx 65.1 µWb
Współczynnik Pc 0.23 Niski (Płaski)
Tabela 11: Fizyka poszukiwań podwodnych
MPL 17x17x3 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 3.22 kg Standard
Woda (dno rzeki) 3.69 kg
(+0.47 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Montaż na Ścianie (Ześlizg)

*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.

2. Wpływ Grubości Blachy

*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.

3. Wytrzymałość Temperaturowa

*Dla materiału N38 granica bezpieczeństwa to 80°C.

Szybki konwerter jednostek
Siła (udźwig)

Moc pola
Jak rozdzielać?

Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.

STAY
MOVE
Zasady Bezpieczeństwa
Elektronika

Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.

Rozruszniki Serca

Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.

Nie dla dzieci

Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.

Kruchy materiał

Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.

Do czego użyć tego magnesu?

Sprawdzone zastosowania dla wymiaru 15x10x2 mm

Elektronika i Czujniki

Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.

Modelarstwo i Druk 3D

Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.

Meble i Fronty

Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.

Sprawdź inne propozycje

Model MPL 17x17x3 / N38 cechuje się niskim profilem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Jako magnes blokowy o dużej mocy (ok. 3.22 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Rozdzielanie magnesów blokowych wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 17x17x3 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Standardowo model MPL 17x17x3 / N38 jest magnesowany przez grubość (wymiar 3 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (17x17 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 17x17x3 mm, co przy wadze 6.5 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 3.22 kg (siła ~31.54 N), co przy tak kompaktowym kształcie świadczy o dużej mocy materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety oraz wady neodymowych magnesów NdFeB.

Oprócz niezwykłą mocą, magnesy typu NdFeB oferują szereg innych zalet::

  • Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
  • Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Czego unikać? Wady i zagrożenia związane z neodymami:

  • Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
  • Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.

Maksymalna siła przyciągania magnesuco się na to składa?

Parametr siły jest wartością teoretyczną maksymalną przeprowadzonego w warunkach wzorcowych:

  • na bloku wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
  • o przekroju wynoszącej minimum 10 mm
  • charakteryzującej się gładkością
  • w warunkach braku dystansu (powierzchnia do powierzchni)
  • przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
  • w temperaturze pokojowej

Udźwig w praktyce – czynniki wpływu

Należy pamiętać, że siła w aplikacji może być niższe w zależności od następujących czynników, zaczynając od najistotniejszych:

  • Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
  • Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
  • Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.

* Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża nośność.

Zalety oraz wady neodymowych magnesów NdFeB.

Oprócz niezwykłą mocą, magnesy typu NdFeB oferują szereg innych zalet::

  • Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
  • Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Czego unikać? Wady i zagrożenia związane z neodymami:

  • Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
  • Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.

Maksymalna siła przyciągania magnesuco się na to składa?

Parametr siły jest wartością teoretyczną maksymalną przeprowadzonego w warunkach wzorcowych:

  • na bloku wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
  • o przekroju wynoszącej minimum 10 mm
  • charakteryzującej się gładkością
  • w warunkach braku dystansu (powierzchnia do powierzchni)
  • przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
  • w temperaturze pokojowej

Udźwig w praktyce – czynniki wpływu

Należy pamiętać, że siła w aplikacji może być niższe w zależności od następujących czynników, zaczynając od najistotniejszych:

  • Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
  • Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
  • Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.

* Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża nośność.

Instrukcja bezpiecznej obsługi magnesów

Ryzyko pożaru

Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.

Zagrożenie dla najmłodszych

Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.

Kruchość materiału

Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.

Siła neodymu

Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.

Smartfony i tablety

Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.

Ryzyko złamań

Duże magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.

Przegrzanie magnesu

Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.

Nie zbliżaj do komputera

Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.

Dla uczulonych

Niektóre osoby posiada nadwrażliwość na nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Wskazane jest używanie rękawic bezlateksowych.

Ostrzeżenie dla sercowców

Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.

Zagrożenie!

Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98