MPL 17x17x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020124
GTIN/EAN: 5906301811305
Długość
17 mm [±0,1 mm]
Szerokość
17 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.22 kg / 31.54 N
Indukcja magnetyczna
187.48 mT / 1875 Gs
Powłoka
[NiCuNi] nikiel
4.71 ZŁ z VAT / szt. + cena za transport
3.83 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń do nas
+48 888 99 98 98
albo daj znać przez
nasz formularz online
na stronie kontaktowej.
Udźwig i formę magnesu testujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 17x17x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 17x17x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020124 |
| GTIN/EAN | 5906301811305 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 17 mm [±0,1 mm] |
| Szerokość | 17 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.22 kg / 31.54 N |
| Indukcja magnetyczna ~ ? | 187.48 mT / 1875 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Poniższe informacje są wynik kalkulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
MPL 17x17x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1874 Gs
187.4 mT
|
3.22 kg / 3220.0 g
31.6 N
|
mocny |
| 1 mm |
1761 Gs
176.1 mT
|
2.84 kg / 2842.9 g
27.9 N
|
mocny |
| 2 mm |
1610 Gs
161.0 mT
|
2.38 kg / 2376.8 g
23.3 N
|
mocny |
| 3 mm |
1440 Gs
144.0 mT
|
1.90 kg / 1901.0 g
18.6 N
|
słaby uchwyt |
| 5 mm |
1099 Gs
109.9 mT
|
1.11 kg / 1107.5 g
10.9 N
|
słaby uchwyt |
| 10 mm |
508 Gs
50.8 mT
|
0.24 kg / 236.4 g
2.3 N
|
słaby uchwyt |
| 15 mm |
245 Gs
24.5 mT
|
0.06 kg / 55.2 g
0.5 N
|
słaby uchwyt |
| 20 mm |
131 Gs
13.1 mT
|
0.02 kg / 15.7 g
0.2 N
|
słaby uchwyt |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 2.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
MPL 17x17x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 644.0 g
6.3 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 568.0 g
5.6 N
|
| 2 mm | Stal (~0.2) |
0.48 kg / 476.0 g
4.7 N
|
| 3 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 5 mm | Stal (~0.2) |
0.22 kg / 222.0 g
2.2 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 17x17x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.97 kg / 966.0 g
9.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 644.0 g
6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 322.0 g
3.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.61 kg / 1610.0 g
15.8 N
|
MPL 17x17x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 322.0 g
3.2 N
|
| 1 mm |
|
0.81 kg / 805.0 g
7.9 N
|
| 2 mm |
|
1.61 kg / 1610.0 g
15.8 N
|
| 5 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
| 10 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
MPL 17x17x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.22 kg / 3220.0 g
31.6 N
|
OK |
| 40 °C | -2.2% |
3.15 kg / 3149.2 g
30.9 N
|
OK |
| 60 °C | -4.4% |
3.08 kg / 3078.3 g
30.2 N
|
|
| 80 °C | -6.6% |
3.01 kg / 3007.5 g
29.5 N
|
|
| 100 °C | -28.8% |
2.29 kg / 2292.6 g
22.5 N
|
MPL 17x17x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.26 kg / 6260 g
61.4 N
3 313 Gs
|
N/A |
| 1 mm |
5.93 kg / 5928 g
58.2 N
3 648 Gs
|
5.33 kg / 5335 g
52.3 N
~0 Gs
|
| 2 mm |
5.53 kg / 5527 g
54.2 N
3 523 Gs
|
4.97 kg / 4974 g
48.8 N
~0 Gs
|
| 3 mm |
5.08 kg / 5085 g
49.9 N
3 379 Gs
|
4.58 kg / 4576 g
44.9 N
~0 Gs
|
| 5 mm |
4.15 kg / 4153 g
40.7 N
3 053 Gs
|
3.74 kg / 3738 g
36.7 N
~0 Gs
|
| 10 mm |
2.15 kg / 2153 g
21.1 N
2 199 Gs
|
1.94 kg / 1938 g
19.0 N
~0 Gs
|
| 20 mm |
0.46 kg / 460 g
4.5 N
1 016 Gs
|
0.41 kg / 414 g
4.1 N
~0 Gs
|
| 50 mm |
0.01 kg / 10 g
0.1 N
153 Gs
|
0.01 kg / 9 g
0.1 N
~0 Gs
|
MPL 17x17x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 17x17x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.45 km/h
(6.52 m/s)
|
0.14 J | |
| 30 mm |
38.89 km/h
(10.80 m/s)
|
0.38 J | |
| 50 mm |
50.19 km/h
(13.94 m/s)
|
0.63 J | |
| 100 mm |
70.98 km/h
(19.72 m/s)
|
1.26 J |
MPL 17x17x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 17x17x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 509 Mx | 65.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
MPL 17x17x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.22 kg | Standard |
| Woda (dno rzeki) |
3.69 kg
(+0.47 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) zyskują estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- o szlifowanej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Ostrzeżenie dla alergików
Niektóre osoby ma nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować wysypkę. Sugerujemy używanie rękawiczek ochronnych.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Przegrzanie magnesu
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Bezpieczna praca
Używaj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od niepowołanych osób.
Elektronika precyzyjna
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
