MPL 15x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020123
GTIN/EAN: 5906301811299
Długość
15 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
2.81 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.20 kg / 31.38 N
Indukcja magnetyczna
468.69 mT / 4687 Gs
Powłoka
[NiCuNi] nikiel
1.390 ZŁ z VAT / szt. + cena za transport
1.130 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub pisz korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig a także budowę elementów magnetycznych sprawdzisz u nas w
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MPL 15x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 15x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020123 |
| GTIN/EAN | 5906301811299 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 2.81 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.20 kg / 31.38 N |
| Indukcja magnetyczna ~ ? | 468.69 mT / 4687 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Niniejsze wartości są wynik analizy inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 15x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4682 Gs
468.2 mT
|
3.20 kg / 7.05 lbs
3200.0 g / 31.4 N
|
średnie ryzyko |
| 1 mm |
3410 Gs
341.0 mT
|
1.70 kg / 3.74 lbs
1697.3 g / 16.7 N
|
bezpieczny |
| 2 mm |
2394 Gs
239.4 mT
|
0.84 kg / 1.84 lbs
836.5 g / 8.2 N
|
bezpieczny |
| 3 mm |
1701 Gs
170.1 mT
|
0.42 kg / 0.93 lbs
422.6 g / 4.1 N
|
bezpieczny |
| 5 mm |
928 Gs
92.8 mT
|
0.13 kg / 0.28 lbs
125.8 g / 1.2 N
|
bezpieczny |
| 10 mm |
286 Gs
28.6 mT
|
0.01 kg / 0.03 lbs
11.9 g / 0.1 N
|
bezpieczny |
| 15 mm |
119 Gs
11.9 mT
|
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
bezpieczny |
| 20 mm |
59 Gs
5.9 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 30 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 15x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
640.0 g / 6.3 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 15x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.41 lbs
640.0 g / 6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 15x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 1 mm |
|
0.80 kg / 1.76 lbs
800.0 g / 7.8 N
|
| 2 mm |
|
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
| 3 mm |
|
2.40 kg / 5.29 lbs
2400.0 g / 23.5 N
|
| 5 mm |
|
3.20 kg / 7.05 lbs
3200.0 g / 31.4 N
|
| 10 mm |
|
3.20 kg / 7.05 lbs
3200.0 g / 31.4 N
|
| 11 mm |
|
3.20 kg / 7.05 lbs
3200.0 g / 31.4 N
|
| 12 mm |
|
3.20 kg / 7.05 lbs
3200.0 g / 31.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 15x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.20 kg / 7.05 lbs
3200.0 g / 31.4 N
|
OK |
| 40 °C | -2.2% |
3.13 kg / 6.90 lbs
3129.6 g / 30.7 N
|
OK |
| 60 °C | -4.4% |
3.06 kg / 6.74 lbs
3059.2 g / 30.0 N
|
|
| 80 °C | -6.6% |
2.99 kg / 6.59 lbs
2988.8 g / 29.3 N
|
|
| 100 °C | -28.8% |
2.28 kg / 5.02 lbs
2278.4 g / 22.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 15x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.14 kg / 22.35 lbs
5 608 Gs
|
1.52 kg / 3.35 lbs
1520 g / 14.9 N
|
N/A |
| 1 mm |
7.53 kg / 16.60 lbs
8 071 Gs
|
1.13 kg / 2.49 lbs
1129 g / 11.1 N
|
6.78 kg / 14.94 lbs
~0 Gs
|
| 2 mm |
5.38 kg / 11.85 lbs
6 820 Gs
|
0.81 kg / 1.78 lbs
806 g / 7.9 N
|
4.84 kg / 10.67 lbs
~0 Gs
|
| 3 mm |
3.78 kg / 8.33 lbs
5 716 Gs
|
0.57 kg / 1.25 lbs
567 g / 5.6 N
|
3.40 kg / 7.49 lbs
~0 Gs
|
| 5 mm |
1.87 kg / 4.13 lbs
4 024 Gs
|
0.28 kg / 0.62 lbs
281 g / 2.8 N
|
1.68 kg / 3.71 lbs
~0 Gs
|
| 10 mm |
0.40 kg / 0.88 lbs
1 857 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.79 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.08 lbs
572 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.08 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
67 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 15x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 15x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.11 km/h
(9.48 m/s)
|
0.13 J | |
| 30 mm |
58.95 km/h
(16.37 m/s)
|
0.38 J | |
| 50 mm |
76.10 km/h
(21.14 m/s)
|
0.63 J | |
| 100 mm |
107.62 km/h
(29.90 m/s)
|
1.26 J |
Tabela 9: Odporność na korozję
MPL 15x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 15x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 366 Mx | 33.7 µWb |
| Współczynnik Pc | 0.60 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 15x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.20 kg | Standard |
| Woda (dno rzeki) |
3.66 kg
(+0.46 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.60
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o grubości przynajmniej 10 mm
- o szlifowanej powierzchni kontaktu
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Maksymalna temperatura
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
To nie jest zabawka
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Karty i dyski
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Zakaz obróbki
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Urazy ciała
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne destabilizuje działanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Niebezpieczeństwo dla rozruszników
Pacjenci z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić działanie implantu.
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Alergia na nikiel
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
