MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020154
GTIN/EAN: 5906301811602
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.35 kg / 111.37 N
Indukcja magnetyczna
249.11 mT / 2491 Gs
Powłoka
[NiCuNi] nikiel
15.07 ZŁ z VAT / szt. + cena za transport
12.25 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo napisz za pomocą
nasz formularz online
na naszej stronie.
Właściwości oraz budowę magnesu obliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020154 |
| GTIN/EAN | 5906301811602 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.35 kg / 111.37 N |
| Indukcja magnetyczna ~ ? | 249.11 mT / 2491 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Poniższe informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2490 Gs
249.0 mT
|
11.35 kg / 11350.0 g
111.3 N
|
krytyczny poziom |
| 1 mm |
2306 Gs
230.6 mT
|
9.73 kg / 9731.3 g
95.5 N
|
mocny |
| 2 mm |
2095 Gs
209.5 mT
|
8.03 kg / 8028.8 g
78.8 N
|
mocny |
| 3 mm |
1877 Gs
187.7 mT
|
6.45 kg / 6445.4 g
63.2 N
|
mocny |
| 5 mm |
1472 Gs
147.2 mT
|
3.97 kg / 3965.1 g
38.9 N
|
mocny |
| 10 mm |
792 Gs
79.2 mT
|
1.15 kg / 1147.1 g
11.3 N
|
słaby uchwyt |
| 15 mm |
454 Gs
45.4 mT
|
0.38 kg / 376.9 g
3.7 N
|
słaby uchwyt |
| 20 mm |
278 Gs
27.8 mT
|
0.14 kg / 141.4 g
1.4 N
|
słaby uchwyt |
| 30 mm |
122 Gs
12.2 mT
|
0.03 kg / 27.0 g
0.3 N
|
słaby uchwyt |
| 50 mm |
35 Gs
3.5 mT
|
0.00 kg / 2.3 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.27 kg / 2270.0 g
22.3 N
|
| 1 mm | Stal (~0.2) |
1.95 kg / 1946.0 g
19.1 N
|
| 2 mm | Stal (~0.2) |
1.61 kg / 1606.0 g
15.8 N
|
| 3 mm | Stal (~0.2) |
1.29 kg / 1290.0 g
12.7 N
|
| 5 mm | Stal (~0.2) |
0.79 kg / 794.0 g
7.8 N
|
| 10 mm | Stal (~0.2) |
0.23 kg / 230.0 g
2.3 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 76.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 40x15x5x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.41 kg / 3405.0 g
33.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.27 kg / 2270.0 g
22.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.14 kg / 1135.0 g
11.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.68 kg / 5675.0 g
55.7 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 40x15x5x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.57 kg / 567.5 g
5.6 N
|
| 1 mm |
|
1.42 kg / 1418.8 g
13.9 N
|
| 2 mm |
|
2.84 kg / 2837.5 g
27.8 N
|
| 5 mm |
|
7.09 kg / 7093.8 g
69.6 N
|
| 10 mm |
|
11.35 kg / 11350.0 g
111.3 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 40x15x5x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.35 kg / 11350.0 g
111.3 N
|
OK |
| 40 °C | -2.2% |
11.10 kg / 11100.3 g
108.9 N
|
OK |
| 60 °C | -4.4% |
10.85 kg / 10850.6 g
106.4 N
|
|
| 80 °C | -6.6% |
10.60 kg / 10600.9 g
104.0 N
|
|
| 100 °C | -28.8% |
8.08 kg / 8081.2 g
79.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 40x15x5x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
22.94 kg / 22943 g
225.1 N
3 961 Gs
|
N/A |
| 1 mm |
21.37 kg / 21370 g
209.6 N
4 807 Gs
|
19.23 kg / 19233 g
188.7 N
~0 Gs
|
| 2 mm |
19.67 kg / 19671 g
193.0 N
4 612 Gs
|
17.70 kg / 17704 g
173.7 N
~0 Gs
|
| 3 mm |
17.94 kg / 17940 g
176.0 N
4 404 Gs
|
16.15 kg / 16146 g
158.4 N
~0 Gs
|
| 5 mm |
14.58 kg / 14582 g
143.1 N
3 971 Gs
|
13.12 kg / 13124 g
128.7 N
~0 Gs
|
| 10 mm |
8.01 kg / 8015 g
78.6 N
2 944 Gs
|
7.21 kg / 7213 g
70.8 N
~0 Gs
|
| 20 mm |
2.32 kg / 2319 g
22.7 N
1 583 Gs
|
2.09 kg / 2087 g
20.5 N
~0 Gs
|
| 50 mm |
0.12 kg / 120 g
1.2 N
359 Gs
|
0.11 kg / 108 g
1.1 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 40x15x5x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x15x5x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.04 km/h
(6.68 m/s)
|
0.50 J | |
| 30 mm |
39.29 km/h
(10.91 m/s)
|
1.34 J | |
| 50 mm |
50.66 km/h
(14.07 m/s)
|
2.23 J | |
| 100 mm |
71.63 km/h
(19.90 m/s)
|
4.45 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x15x5x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x15x5x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 40x15x5x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.35 kg | Standard |
| Woda (dno rzeki) |
13.00 kg
(+1.65 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- z zastosowaniem płyty ze stali o wysokiej przenikalności, która służy jako idealny przewodnik strumienia
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ogromna siła
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Zagrożenie zapłonem
Proszek generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Ryzyko pęknięcia
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Ryzyko połknięcia
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ryzyko uczulenia
Część populacji posiada uczulenie na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Zalecamy używanie rękawic bezlateksowych.
Rozruszniki serca
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie implantu.
