MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020154
GTIN/EAN: 5906301811602
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.35 kg / 111.37 N
Indukcja magnetyczna
249.11 mT / 2491 Gs
Powłoka
[NiCuNi] nikiel
15.07 ZŁ z VAT / szt. + cena za transport
12.25 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie daj znać przez
formularz
w sekcji kontakt.
Udźwig i formę magnesu zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020154 |
| GTIN/EAN | 5906301811602 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.35 kg / 111.37 N |
| Indukcja magnetyczna ~ ? | 249.11 mT / 2491 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt kalkulacji matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2490 Gs
249.0 mT
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
miażdżący |
| 1 mm |
2306 Gs
230.6 mT
|
9.73 kg / 21.45 lbs
9731.3 g / 95.5 N
|
mocny |
| 2 mm |
2095 Gs
209.5 mT
|
8.03 kg / 17.70 lbs
8028.8 g / 78.8 N
|
mocny |
| 3 mm |
1877 Gs
187.7 mT
|
6.45 kg / 14.21 lbs
6445.4 g / 63.2 N
|
mocny |
| 5 mm |
1472 Gs
147.2 mT
|
3.97 kg / 8.74 lbs
3965.1 g / 38.9 N
|
mocny |
| 10 mm |
792 Gs
79.2 mT
|
1.15 kg / 2.53 lbs
1147.1 g / 11.3 N
|
bezpieczny |
| 15 mm |
454 Gs
45.4 mT
|
0.38 kg / 0.83 lbs
376.9 g / 3.7 N
|
bezpieczny |
| 20 mm |
278 Gs
27.8 mT
|
0.14 kg / 0.31 lbs
141.4 g / 1.4 N
|
bezpieczny |
| 30 mm |
122 Gs
12.2 mT
|
0.03 kg / 0.06 lbs
27.0 g / 0.3 N
|
bezpieczny |
| 50 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.01 lbs
2.3 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| 1 mm | Stal (~0.2) |
1.95 kg / 4.29 lbs
1946.0 g / 19.1 N
|
| 2 mm | Stal (~0.2) |
1.61 kg / 3.54 lbs
1606.0 g / 15.8 N
|
| 3 mm | Stal (~0.2) |
1.29 kg / 2.84 lbs
1290.0 g / 12.7 N
|
| 5 mm | Stal (~0.2) |
0.79 kg / 1.75 lbs
794.0 g / 7.8 N
|
| 10 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 40x15x5x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.41 kg / 7.51 lbs
3405.0 g / 33.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.14 kg / 2.50 lbs
1135.0 g / 11.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.68 kg / 12.51 lbs
5675.0 g / 55.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 40x15x5x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.57 kg / 1.25 lbs
567.5 g / 5.6 N
|
| 1 mm |
|
1.42 kg / 3.13 lbs
1418.8 g / 13.9 N
|
| 2 mm |
|
2.84 kg / 6.26 lbs
2837.5 g / 27.8 N
|
| 3 mm |
|
4.26 kg / 9.38 lbs
4256.3 g / 41.8 N
|
| 5 mm |
|
7.09 kg / 15.64 lbs
7093.8 g / 69.6 N
|
| 10 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 11 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 12 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 40x15x5x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
OK |
| 40 °C | -2.2% |
11.10 kg / 24.47 lbs
11100.3 g / 108.9 N
|
OK |
| 60 °C | -4.4% |
10.85 kg / 23.92 lbs
10850.6 g / 106.4 N
|
|
| 80 °C | -6.6% |
10.60 kg / 23.37 lbs
10600.9 g / 104.0 N
|
|
| 100 °C | -28.8% |
8.08 kg / 17.82 lbs
8081.2 g / 79.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 40x15x5x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.94 kg / 50.58 lbs
3 961 Gs
|
3.44 kg / 7.59 lbs
3441 g / 33.8 N
|
N/A |
| 1 mm |
21.37 kg / 47.11 lbs
4 807 Gs
|
3.21 kg / 7.07 lbs
3205 g / 31.4 N
|
19.23 kg / 42.40 lbs
~0 Gs
|
| 2 mm |
19.67 kg / 43.37 lbs
4 612 Gs
|
2.95 kg / 6.50 lbs
2951 g / 28.9 N
|
17.70 kg / 39.03 lbs
~0 Gs
|
| 3 mm |
17.94 kg / 39.55 lbs
4 404 Gs
|
2.69 kg / 5.93 lbs
2691 g / 26.4 N
|
16.15 kg / 35.59 lbs
~0 Gs
|
| 5 mm |
14.58 kg / 32.15 lbs
3 971 Gs
|
2.19 kg / 4.82 lbs
2187 g / 21.5 N
|
13.12 kg / 28.93 lbs
~0 Gs
|
| 10 mm |
8.01 kg / 17.67 lbs
2 944 Gs
|
1.20 kg / 2.65 lbs
1202 g / 11.8 N
|
7.21 kg / 15.90 lbs
~0 Gs
|
| 20 mm |
2.32 kg / 5.11 lbs
1 583 Gs
|
0.35 kg / 0.77 lbs
348 g / 3.4 N
|
2.09 kg / 4.60 lbs
~0 Gs
|
| 50 mm |
0.12 kg / 0.26 lbs
359 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 60 mm |
0.05 kg / 0.12 lbs
243 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
171 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
124 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
92 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
70 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 40x15x5x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x15x5x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.04 km/h
(6.68 m/s)
|
0.50 J | |
| 30 mm |
39.29 km/h
(10.91 m/s)
|
1.34 J | |
| 50 mm |
50.66 km/h
(14.07 m/s)
|
2.23 J | |
| 100 mm |
71.63 km/h
(19.90 m/s)
|
4.45 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x15x5x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x15x5x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x15x5x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.35 kg | Standard |
| Woda (dno rzeki) |
13.00 kg
(+1.65 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- o szlifowanej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko rozmagnesowania
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Interferencja medyczna
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Ochrona urządzeń
Ekstremalne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Ryzyko połknięcia
Neodymowe magnesy nie służą do zabawy. Połknięcie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Ryzyko pożaru
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Reakcje alergiczne
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Ogromna siła
Używaj magnesy z rozwagą. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
