MPL 15x15x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020120
GTIN/EAN: 5906301811268
Długość
15 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
8.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.87 kg / 57.62 N
Indukcja magnetyczna
318.00 mT / 3180 Gs
Powłoka
[NiCuNi] nikiel
4.03 ZŁ z VAT / szt. + cena za transport
3.28 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie pisz poprzez
formularz zapytania
na stronie kontaktowej.
Właściwości oraz kształt magnesów neodymowych testujesz w naszym
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MPL 15x15x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 15x15x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020120 |
| GTIN/EAN | 5906301811268 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 8.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.87 kg / 57.62 N |
| Indukcja magnetyczna ~ ? | 318.00 mT / 3180 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione dane są rezultat kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 15x15x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3179 Gs
317.9 mT
|
5.87 kg / 12.94 lbs
5870.0 g / 57.6 N
|
mocny |
| 1 mm |
2873 Gs
287.3 mT
|
4.79 kg / 10.57 lbs
4794.1 g / 47.0 N
|
mocny |
| 2 mm |
2528 Gs
252.8 mT
|
3.71 kg / 8.18 lbs
3712.5 g / 36.4 N
|
mocny |
| 3 mm |
2181 Gs
218.1 mT
|
2.76 kg / 6.09 lbs
2763.0 g / 27.1 N
|
mocny |
| 5 mm |
1565 Gs
156.5 mT
|
1.42 kg / 3.14 lbs
1422.0 g / 13.9 N
|
słaby uchwyt |
| 10 mm |
659 Gs
65.9 mT
|
0.25 kg / 0.56 lbs
252.1 g / 2.5 N
|
słaby uchwyt |
| 15 mm |
307 Gs
30.7 mT
|
0.05 kg / 0.12 lbs
54.7 g / 0.5 N
|
słaby uchwyt |
| 20 mm |
162 Gs
16.2 mT
|
0.02 kg / 0.03 lbs
15.2 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
59 Gs
5.9 mT
|
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 15x15x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.17 kg / 2.59 lbs
1174.0 g / 11.5 N
|
| 1 mm | Stal (~0.2) |
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| 2 mm | Stal (~0.2) |
0.74 kg / 1.64 lbs
742.0 g / 7.3 N
|
| 3 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| 5 mm | Stal (~0.2) |
0.28 kg / 0.63 lbs
284.0 g / 2.8 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
50.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 15x15x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.76 kg / 3.88 lbs
1761.0 g / 17.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.17 kg / 2.59 lbs
1174.0 g / 11.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.59 kg / 1.29 lbs
587.0 g / 5.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.94 kg / 6.47 lbs
2935.0 g / 28.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 15x15x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.59 kg / 1.29 lbs
587.0 g / 5.8 N
|
| 1 mm |
|
1.47 kg / 3.24 lbs
1467.5 g / 14.4 N
|
| 2 mm |
|
2.94 kg / 6.47 lbs
2935.0 g / 28.8 N
|
| 3 mm |
|
4.40 kg / 9.71 lbs
4402.5 g / 43.2 N
|
| 5 mm |
|
5.87 kg / 12.94 lbs
5870.0 g / 57.6 N
|
| 10 mm |
|
5.87 kg / 12.94 lbs
5870.0 g / 57.6 N
|
| 11 mm |
|
5.87 kg / 12.94 lbs
5870.0 g / 57.6 N
|
| 12 mm |
|
5.87 kg / 12.94 lbs
5870.0 g / 57.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 15x15x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.87 kg / 12.94 lbs
5870.0 g / 57.6 N
|
OK |
| 40 °C | -2.2% |
5.74 kg / 12.66 lbs
5740.9 g / 56.3 N
|
OK |
| 60 °C | -4.4% |
5.61 kg / 12.37 lbs
5611.7 g / 55.1 N
|
|
| 80 °C | -6.6% |
5.48 kg / 12.09 lbs
5482.6 g / 53.8 N
|
|
| 100 °C | -28.8% |
4.18 kg / 9.21 lbs
4179.4 g / 41.0 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 15x15x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.02 kg / 30.90 lbs
4 741 Gs
|
2.10 kg / 4.64 lbs
2103 g / 20.6 N
|
N/A |
| 1 mm |
12.77 kg / 28.15 lbs
6 068 Gs
|
1.92 kg / 4.22 lbs
1916 g / 18.8 N
|
11.49 kg / 25.34 lbs
~0 Gs
|
| 2 mm |
11.45 kg / 25.24 lbs
5 746 Gs
|
1.72 kg / 3.79 lbs
1717 g / 16.8 N
|
10.30 kg / 22.72 lbs
~0 Gs
|
| 3 mm |
10.13 kg / 22.34 lbs
5 405 Gs
|
1.52 kg / 3.35 lbs
1520 g / 14.9 N
|
9.12 kg / 20.10 lbs
~0 Gs
|
| 5 mm |
7.68 kg / 16.93 lbs
4 706 Gs
|
1.15 kg / 2.54 lbs
1152 g / 11.3 N
|
6.91 kg / 15.24 lbs
~0 Gs
|
| 10 mm |
3.40 kg / 7.49 lbs
3 129 Gs
|
0.51 kg / 1.12 lbs
509 g / 5.0 N
|
3.06 kg / 6.74 lbs
~0 Gs
|
| 20 mm |
0.60 kg / 1.33 lbs
1 318 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
188 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
118 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
79 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
40 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 15x15x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 15x15x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.30 km/h
(7.58 m/s)
|
0.24 J | |
| 30 mm |
46.08 km/h
(12.80 m/s)
|
0.69 J | |
| 50 mm |
59.47 km/h
(16.52 m/s)
|
1.15 J | |
| 100 mm |
84.11 km/h
(23.36 m/s)
|
2.30 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 15x15x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 15x15x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 651 Mx | 76.5 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 15x15x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.87 kg | Standard |
| Woda (dno rzeki) |
6.72 kg
(+0.85 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z wykorzystaniem płyty ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- o przekroju nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (metal do metalu)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig wyznaczano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Niebezpieczeństwo przytrzaśnięcia
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Bezpieczny dystans
Bardzo silne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Ostrzeżenie dla alergików
Niektóre osoby wykazuje nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może powodować silną reakcję alergiczną. Zalecamy stosowanie rękawic bezlateksowych.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Zagrożenie zapłonem
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ryzyko połknięcia
Neodymowe magnesy to nie zabawki. Inhalacja dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Limity termiczne
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
