MPL 15x15x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020120
GTIN/EAN: 5906301811268
Długość
15 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
8.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.87 kg / 57.62 N
Indukcja magnetyczna
318.00 mT / 3180 Gs
Powłoka
[NiCuNi] nikiel
4.03 ZŁ z VAT / szt. + cena za transport
3.28 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo napisz korzystając z
formularz zapytania
na stronie kontaktowej.
Masę i budowę magnesów przetestujesz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MPL 15x15x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 15x15x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020120 |
| GTIN/EAN | 5906301811268 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 8.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.87 kg / 57.62 N |
| Indukcja magnetyczna ~ ? | 318.00 mT / 3180 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze dane są bezpośredni efekt kalkulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MPL 15x15x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3179 Gs
317.9 mT
|
5.87 kg / 5870.0 g
57.6 N
|
średnie ryzyko |
| 1 mm |
2873 Gs
287.3 mT
|
4.79 kg / 4794.1 g
47.0 N
|
średnie ryzyko |
| 2 mm |
2528 Gs
252.8 mT
|
3.71 kg / 3712.5 g
36.4 N
|
średnie ryzyko |
| 3 mm |
2181 Gs
218.1 mT
|
2.76 kg / 2763.0 g
27.1 N
|
średnie ryzyko |
| 5 mm |
1565 Gs
156.5 mT
|
1.42 kg / 1422.0 g
13.9 N
|
bezpieczny |
| 10 mm |
659 Gs
65.9 mT
|
0.25 kg / 252.1 g
2.5 N
|
bezpieczny |
| 15 mm |
307 Gs
30.7 mT
|
0.05 kg / 54.7 g
0.5 N
|
bezpieczny |
| 20 mm |
162 Gs
16.2 mT
|
0.02 kg / 15.2 g
0.1 N
|
bezpieczny |
| 30 mm |
59 Gs
5.9 mT
|
0.00 kg / 2.0 g
0.0 N
|
bezpieczny |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 15x15x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.17 kg / 1174.0 g
11.5 N
|
| 1 mm | Stal (~0.2) |
0.96 kg / 958.0 g
9.4 N
|
| 2 mm | Stal (~0.2) |
0.74 kg / 742.0 g
7.3 N
|
| 3 mm | Stal (~0.2) |
0.55 kg / 552.0 g
5.4 N
|
| 5 mm | Stal (~0.2) |
0.28 kg / 284.0 g
2.8 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 50.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 15x15x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.76 kg / 1761.0 g
17.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.17 kg / 1174.0 g
11.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.59 kg / 587.0 g
5.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.94 kg / 2935.0 g
28.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 15x15x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.59 kg / 587.0 g
5.8 N
|
| 1 mm |
|
1.47 kg / 1467.5 g
14.4 N
|
| 2 mm |
|
2.94 kg / 2935.0 g
28.8 N
|
| 5 mm |
|
5.87 kg / 5870.0 g
57.6 N
|
| 10 mm |
|
5.87 kg / 5870.0 g
57.6 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 15x15x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.87 kg / 5870.0 g
57.6 N
|
OK |
| 40 °C | -2.2% |
5.74 kg / 5740.9 g
56.3 N
|
OK |
| 60 °C | -4.4% |
5.61 kg / 5611.7 g
55.1 N
|
|
| 80 °C | -6.6% |
5.48 kg / 5482.6 g
53.8 N
|
|
| 100 °C | -28.8% |
4.18 kg / 4179.4 g
41.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 15x15x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
14.02 kg / 14018 g
137.5 N
4 741 Gs
|
N/A |
| 1 mm |
12.77 kg / 12770 g
125.3 N
6 068 Gs
|
11.49 kg / 11493 g
112.7 N
~0 Gs
|
| 2 mm |
11.45 kg / 11449 g
112.3 N
5 746 Gs
|
10.30 kg / 10304 g
101.1 N
~0 Gs
|
| 3 mm |
10.13 kg / 10133 g
99.4 N
5 405 Gs
|
9.12 kg / 9119 g
89.5 N
~0 Gs
|
| 5 mm |
7.68 kg / 7681 g
75.3 N
4 706 Gs
|
6.91 kg / 6913 g
67.8 N
~0 Gs
|
| 10 mm |
3.40 kg / 3396 g
33.3 N
3 129 Gs
|
3.06 kg / 3056 g
30.0 N
~0 Gs
|
| 20 mm |
0.60 kg / 602 g
5.9 N
1 318 Gs
|
0.54 kg / 542 g
5.3 N
~0 Gs
|
| 50 mm |
0.01 kg / 12 g
0.1 N
188 Gs
|
0.01 kg / 11 g
0.1 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 15x15x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 15x15x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.30 km/h
(7.58 m/s)
|
0.24 J | |
| 30 mm |
46.08 km/h
(12.80 m/s)
|
0.69 J | |
| 50 mm |
59.47 km/h
(16.52 m/s)
|
1.15 J | |
| 100 mm |
84.11 km/h
(23.36 m/s)
|
2.30 J |
Tabela 9: Odporność na korozję
MPL 15x15x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 15x15x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 651 Mx | 76.5 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 15x15x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.87 kg | Standard |
| Woda (dno rzeki) |
6.72 kg
(+0.85 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę idealny przewodnik strumienia
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną oczyszczoną i gładką
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka stal nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Niszczenie danych
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Wpływ na smartfony
Silne pole magnetyczne destabilizuje działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Tylko dla dorosłych
Zawsze zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Unikaj kontaktu w przypadku alergii
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
