Magnesy neodymowe – najsilniejsze na rynku

Chcesz kupić naprawdę silne magnesy? Oferujemy szeroki wybór magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do zastosowań domowych, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment w naszym magazynie.

zobacz katalog magnesów

Zestawy do magnet fishing (poszukiwaczy)

Zacznij swoje hobby z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz mocne linki są niezawodne w rzekach i jeziorach.

znajdź zestaw dla siebie

Magnetyczne systemy mocowań

Profesjonalne rozwiązania do montażu bezinwazyjnego. Mocowania gwintowane (M8, M10, M12) zapewniają szybkie usprawnienie pracy na magazynach. Są niezastąpione przy mocowaniu lamp, czujników oraz reklam.

sprawdź dostępne gwinty

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 100x40x20 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020109

GTIN/EAN: 5906301811152

5.00

Długość

100 mm [±0,1 mm]

Szerokość

40 mm [±0,1 mm]

Wysokość

20 mm [±0,1 mm]

Waga

600 g

Kierunek magnesowania

↑ osiowy

Udźwig

120.01 kg / 1177.33 N

Indukcja magnetyczna

337.24 mT / 3372 Gs

Powłoka

[NiCuNi] nikiel

335.30 z VAT / szt. + cena za transport

272.60 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
272.60 ZŁ
335.30 ZŁ
cena od 5 szt.
256.24 ZŁ
315.18 ZŁ
cena od 10 szt.
239.89 ZŁ
295.06 ZŁ
Masz wątpliwości?

Zadzwoń i zapytaj +48 888 99 98 98 ewentualnie pisz za pomocą formularz na naszej stronie.
Siłę oraz formę magnesu neodymowego obliczysz u nas w narzędziu online do obliczeń.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Właściwości fizyczne MPL 100x40x20 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 100x40x20 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020109
GTIN/EAN 5906301811152
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 100 mm [±0,1 mm]
Szerokość 40 mm [±0,1 mm]
Wysokość 20 mm [±0,1 mm]
Waga 600 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 120.01 kg / 1177.33 N
Indukcja magnetyczna ~ ? 337.24 mT / 3372 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 100x40x20 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu neodymowego - parametry techniczne

Niniejsze informacje są wynik symulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 100x40x20 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3372 Gs
337.2 mT
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
miażdżący
1 mm 3268 Gs
326.8 mT
112.70 kg / 248.45 lbs
112695.4 g / 1105.5 N
miażdżący
2 mm 3158 Gs
315.8 mT
105.27 kg / 232.09 lbs
105272.6 g / 1032.7 N
miażdżący
3 mm 3046 Gs
304.6 mT
97.92 kg / 215.88 lbs
97921.3 g / 960.6 N
miażdżący
5 mm 2818 Gs
281.8 mT
83.78 kg / 184.71 lbs
83783.3 g / 821.9 N
miażdżący
10 mm 2266 Gs
226.6 mT
54.17 kg / 119.43 lbs
54174.5 g / 531.5 N
miażdżący
15 mm 1794 Gs
179.4 mT
33.96 kg / 74.86 lbs
33955.7 g / 333.1 N
miażdżący
20 mm 1419 Gs
141.9 mT
21.25 kg / 46.84 lbs
21248.1 g / 208.4 N
miażdżący
30 mm 908 Gs
90.8 mT
8.70 kg / 19.17 lbs
8696.3 g / 85.3 N
średnie ryzyko
50 mm 416 Gs
41.6 mT
1.83 kg / 4.02 lbs
1825.4 g / 17.9 N
niskie ryzyko

Tabela 2: Siła równoległa zsuwania (pion)
MPL 100x40x20 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
1 mm Stal (~0.2) 22.54 kg / 49.69 lbs
22540.0 g / 221.1 N
2 mm Stal (~0.2) 21.05 kg / 46.42 lbs
21054.0 g / 206.5 N
3 mm Stal (~0.2) 19.58 kg / 43.18 lbs
19584.0 g / 192.1 N
5 mm Stal (~0.2) 16.76 kg / 36.94 lbs
16756.0 g / 164.4 N
10 mm Stal (~0.2) 10.83 kg / 23.88 lbs
10834.0 g / 106.3 N
15 mm Stal (~0.2) 6.79 kg / 14.97 lbs
6792.0 g / 66.6 N
20 mm Stal (~0.2) 4.25 kg / 9.37 lbs
4250.0 g / 41.7 N
30 mm Stal (~0.2) 1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
50 mm Stal (~0.2) 0.37 kg / 0.81 lbs
366.0 g / 3.6 N

Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 100x40x20 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
36.00 kg / 79.37 lbs
36003.0 g / 353.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
12.00 kg / 26.46 lbs
12001.0 g / 117.7 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
60.01 kg / 132.29 lbs
60005.0 g / 588.6 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 100x40x20 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
3%
4.00 kg / 8.82 lbs
4000.3 g / 39.2 N
1 mm
8%
10.00 kg / 22.05 lbs
10000.8 g / 98.1 N
2 mm
17%
20.00 kg / 44.10 lbs
20001.7 g / 196.2 N
3 mm
25%
30.00 kg / 66.14 lbs
30002.5 g / 294.3 N
5 mm
42%
50.00 kg / 110.24 lbs
50004.2 g / 490.5 N
10 mm
83%
100.01 kg / 220.48 lbs
100008.3 g / 981.1 N
11 mm
92%
110.01 kg / 242.53 lbs
110009.2 g / 1079.2 N
12 mm
100%
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 100x40x20 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
OK
40 °C -2.2% 117.37 kg / 258.76 lbs
117369.8 g / 1151.4 N
OK
60 °C -4.4% 114.73 kg / 252.94 lbs
114729.6 g / 1125.5 N
80 °C -6.6% 112.09 kg / 247.11 lbs
112089.3 g / 1099.6 N
100 °C -28.8% 85.45 kg / 188.38 lbs
85447.1 g / 838.2 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 100x40x20 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 280.40 kg / 618.18 lbs
4 790 Gs
42.06 kg / 92.73 lbs
42060 g / 412.6 N
N/A
1 mm 271.97 kg / 599.59 lbs
6 642 Gs
40.80 kg / 89.94 lbs
40796 g / 400.2 N
244.77 kg / 539.63 lbs
~0 Gs
2 mm 263.31 kg / 580.50 lbs
6 535 Gs
39.50 kg / 87.08 lbs
39497 g / 387.5 N
236.98 kg / 522.45 lbs
~0 Gs
3 mm 254.63 kg / 561.37 lbs
6 427 Gs
38.20 kg / 84.21 lbs
38195 g / 374.7 N
229.17 kg / 505.24 lbs
~0 Gs
5 mm 237.35 kg / 523.26 lbs
6 205 Gs
35.60 kg / 78.49 lbs
35602 g / 349.3 N
213.61 kg / 470.93 lbs
~0 Gs
10 mm 195.76 kg / 431.58 lbs
5 635 Gs
29.36 kg / 64.74 lbs
29364 g / 288.1 N
176.18 kg / 388.42 lbs
~0 Gs
20 mm 126.58 kg / 279.06 lbs
4 531 Gs
18.99 kg / 41.86 lbs
18987 g / 186.3 N
113.92 kg / 251.15 lbs
~0 Gs
50 mm 31.47 kg / 69.38 lbs
2 259 Gs
4.72 kg / 10.41 lbs
4721 g / 46.3 N
28.32 kg / 62.44 lbs
~0 Gs
60 mm 20.32 kg / 44.80 lbs
1 815 Gs
3.05 kg / 6.72 lbs
3048 g / 29.9 N
18.29 kg / 40.32 lbs
~0 Gs
70 mm 13.38 kg / 29.50 lbs
1 473 Gs
2.01 kg / 4.42 lbs
2007 g / 19.7 N
12.04 kg / 26.55 lbs
~0 Gs
80 mm 8.98 kg / 19.80 lbs
1 207 Gs
1.35 kg / 2.97 lbs
1347 g / 13.2 N
8.08 kg / 17.82 lbs
~0 Gs
90 mm 6.14 kg / 13.53 lbs
998 Gs
0.92 kg / 2.03 lbs
920 g / 9.0 N
5.52 kg / 12.18 lbs
~0 Gs
100 mm 4.27 kg / 9.40 lbs
832 Gs
0.64 kg / 1.41 lbs
640 g / 6.3 N
3.84 kg / 8.46 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 100x40x20 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 30.5 cm
Implant słuchowy 10 Gs (1.0 mT) 24.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 18.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 14.5 cm
Pilot do auta 50 Gs (5.0 mT) 13.5 cm
Karta płatnicza 400 Gs (40.0 mT) 5.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 4.5 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 100x40x20 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 17.84 km/h
(4.96 m/s)
7.37 J
30 mm 25.80 km/h
(7.17 m/s)
15.41 J
50 mm 32.20 km/h
(8.94 m/s)
23.99 J
100 mm 45.13 km/h
(12.54 m/s)
47.14 J

Tabela 9: Parametry powłoki (trwałość)
MPL 100x40x20 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MPL 100x40x20 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 131 922 Mx 1319.2 µWb
Współczynnik Pc 0.38 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MPL 100x40x20 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 120.01 kg Standard
Woda (dno rzeki) 137.41 kg
(+17.40 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Ześlizg (ściana)

*Ważne: Na pionowej ścianie magnes utrzyma tylko ułamek siły prostopadłej.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.

3. Spadek mocy w temperaturze

*W klasie N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020109-2026
Szybki konwerter jednostek
Siła oderwania

Indukcja magnetyczna

Sprawdź inne propozycje

Komponent MPL 100x40x20 / N38 cechuje się płaskim kształtem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie doskonałe do budowy separatorów i maszyn. Ten prostopadłościan o sile 1177.33 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 100x40x20 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji generatorów oraz systemów transportu bliskiego. Świetnie sprawdzają się jako niewidoczne mocowania pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 100x40x20 / N38 najlepiej używać mocne kleje epoksydowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Pamiętaj, aby przed klejeniem oczyścić i odtłuścić powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Standardowo model MPL 100x40x20 / N38 jest magnesowany osiowo (wymiar 20 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 100x40x20 mm, co przy wadze 600 g czyni go elementem o wysokiej gęstości energii. Jest to blok magnetyczny o gabarytach 100x40x20 mm i masie własnej 600 g, gotowy do pracy w temperaturze do 80°C. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Wady i zalety neodymowych magnesów Nd2Fe14B.

Mocne strony

Należy pamiętać, iż obok ekstremalnej mocy, magnesy te cechują się następującymi plusami:
  • Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
  • Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Dzięki powłoce (nikiel, Au, Ag) zyskują estetyczny, metaliczny wygląd.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
  • Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.

Minusy

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Analiza siły trzymania

Siła oderwania magnesu w optymalnych warunkachod czego zależy?

Moc magnesu to rezultat pomiaru dla warunków idealnego styku, obejmującej:
  • na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
  • której wymiar poprzeczny sięga przynajmniej 10 mm
  • charakteryzującej się równą strukturą
  • w warunkach bezszczelinowych (powierzchnia do powierzchni)
  • przy osiowym wektorze siły (kąt 90 stopni)
  • w warunkach ok. 20°C

Udźwig magnesu w użyciu – kluczowe czynniki

Podczas codziennego użytkowania, faktyczna siła trzymania jest determinowana przez szeregu czynników, wymienionych od najbardziej istotnych:
  • Dystans – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
  • Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
  • Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
  • Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
  • Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).

Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.

Środki ostrożności podczas pracy z magnesami neodymowymi
Samozapłon

Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.

Limity termiczne

Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.

Uszkodzenia ciała

Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!

Zagrożenie dla nawigacji

Silne pole magnetyczne wpływa negatywnie na działanie czujników w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.

Ostrożność wymagana

Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.

Zagrożenie życia

Osoby z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.

Zakaz zabawy

Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.

Ostrzeżenie dla alergików

Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.

Magnesy są kruche

Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.

Pole magnetyczne a elektronika

Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.

Safety First! Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98