MPL 100x40x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020109
GTIN/EAN: 5906301811152
Długość
100 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
600 g
Kierunek magnesowania
↑ osiowy
Udźwig
120.01 kg / 1177.33 N
Indukcja magnetyczna
337.24 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
335.30 ZŁ z VAT / szt. + cena za transport
272.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz
na naszej stronie.
Siłę oraz formę magnesu neodymowego obliczysz u nas w
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 100x40x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 100x40x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020109 |
| GTIN/EAN | 5906301811152 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 100 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 600 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 120.01 kg / 1177.33 N |
| Indukcja magnetyczna ~ ? | 337.24 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Niniejsze informacje są wynik symulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 100x40x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3372 Gs
337.2 mT
|
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
miażdżący |
| 1 mm |
3268 Gs
326.8 mT
|
112.70 kg / 248.45 lbs
112695.4 g / 1105.5 N
|
miażdżący |
| 2 mm |
3158 Gs
315.8 mT
|
105.27 kg / 232.09 lbs
105272.6 g / 1032.7 N
|
miażdżący |
| 3 mm |
3046 Gs
304.6 mT
|
97.92 kg / 215.88 lbs
97921.3 g / 960.6 N
|
miażdżący |
| 5 mm |
2818 Gs
281.8 mT
|
83.78 kg / 184.71 lbs
83783.3 g / 821.9 N
|
miażdżący |
| 10 mm |
2266 Gs
226.6 mT
|
54.17 kg / 119.43 lbs
54174.5 g / 531.5 N
|
miażdżący |
| 15 mm |
1794 Gs
179.4 mT
|
33.96 kg / 74.86 lbs
33955.7 g / 333.1 N
|
miażdżący |
| 20 mm |
1419 Gs
141.9 mT
|
21.25 kg / 46.84 lbs
21248.1 g / 208.4 N
|
miażdżący |
| 30 mm |
908 Gs
90.8 mT
|
8.70 kg / 19.17 lbs
8696.3 g / 85.3 N
|
średnie ryzyko |
| 50 mm |
416 Gs
41.6 mT
|
1.83 kg / 4.02 lbs
1825.4 g / 17.9 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 100x40x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
|
| 1 mm | Stal (~0.2) |
22.54 kg / 49.69 lbs
22540.0 g / 221.1 N
|
| 2 mm | Stal (~0.2) |
21.05 kg / 46.42 lbs
21054.0 g / 206.5 N
|
| 3 mm | Stal (~0.2) |
19.58 kg / 43.18 lbs
19584.0 g / 192.1 N
|
| 5 mm | Stal (~0.2) |
16.76 kg / 36.94 lbs
16756.0 g / 164.4 N
|
| 10 mm | Stal (~0.2) |
10.83 kg / 23.88 lbs
10834.0 g / 106.3 N
|
| 15 mm | Stal (~0.2) |
6.79 kg / 14.97 lbs
6792.0 g / 66.6 N
|
| 20 mm | Stal (~0.2) |
4.25 kg / 9.37 lbs
4250.0 g / 41.7 N
|
| 30 mm | Stal (~0.2) |
1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
|
| 50 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 100x40x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
36.00 kg / 79.37 lbs
36003.0 g / 353.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
12.00 kg / 26.46 lbs
12001.0 g / 117.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
60.01 kg / 132.29 lbs
60005.0 g / 588.6 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 100x40x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
4.00 kg / 8.82 lbs
4000.3 g / 39.2 N
|
| 1 mm |
|
10.00 kg / 22.05 lbs
10000.8 g / 98.1 N
|
| 2 mm |
|
20.00 kg / 44.10 lbs
20001.7 g / 196.2 N
|
| 3 mm |
|
30.00 kg / 66.14 lbs
30002.5 g / 294.3 N
|
| 5 mm |
|
50.00 kg / 110.24 lbs
50004.2 g / 490.5 N
|
| 10 mm |
|
100.01 kg / 220.48 lbs
100008.3 g / 981.1 N
|
| 11 mm |
|
110.01 kg / 242.53 lbs
110009.2 g / 1079.2 N
|
| 12 mm |
|
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 100x40x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
OK |
| 40 °C | -2.2% |
117.37 kg / 258.76 lbs
117369.8 g / 1151.4 N
|
OK |
| 60 °C | -4.4% |
114.73 kg / 252.94 lbs
114729.6 g / 1125.5 N
|
|
| 80 °C | -6.6% |
112.09 kg / 247.11 lbs
112089.3 g / 1099.6 N
|
|
| 100 °C | -28.8% |
85.45 kg / 188.38 lbs
85447.1 g / 838.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 100x40x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
280.40 kg / 618.18 lbs
4 790 Gs
|
42.06 kg / 92.73 lbs
42060 g / 412.6 N
|
N/A |
| 1 mm |
271.97 kg / 599.59 lbs
6 642 Gs
|
40.80 kg / 89.94 lbs
40796 g / 400.2 N
|
244.77 kg / 539.63 lbs
~0 Gs
|
| 2 mm |
263.31 kg / 580.50 lbs
6 535 Gs
|
39.50 kg / 87.08 lbs
39497 g / 387.5 N
|
236.98 kg / 522.45 lbs
~0 Gs
|
| 3 mm |
254.63 kg / 561.37 lbs
6 427 Gs
|
38.20 kg / 84.21 lbs
38195 g / 374.7 N
|
229.17 kg / 505.24 lbs
~0 Gs
|
| 5 mm |
237.35 kg / 523.26 lbs
6 205 Gs
|
35.60 kg / 78.49 lbs
35602 g / 349.3 N
|
213.61 kg / 470.93 lbs
~0 Gs
|
| 10 mm |
195.76 kg / 431.58 lbs
5 635 Gs
|
29.36 kg / 64.74 lbs
29364 g / 288.1 N
|
176.18 kg / 388.42 lbs
~0 Gs
|
| 20 mm |
126.58 kg / 279.06 lbs
4 531 Gs
|
18.99 kg / 41.86 lbs
18987 g / 186.3 N
|
113.92 kg / 251.15 lbs
~0 Gs
|
| 50 mm |
31.47 kg / 69.38 lbs
2 259 Gs
|
4.72 kg / 10.41 lbs
4721 g / 46.3 N
|
28.32 kg / 62.44 lbs
~0 Gs
|
| 60 mm |
20.32 kg / 44.80 lbs
1 815 Gs
|
3.05 kg / 6.72 lbs
3048 g / 29.9 N
|
18.29 kg / 40.32 lbs
~0 Gs
|
| 70 mm |
13.38 kg / 29.50 lbs
1 473 Gs
|
2.01 kg / 4.42 lbs
2007 g / 19.7 N
|
12.04 kg / 26.55 lbs
~0 Gs
|
| 80 mm |
8.98 kg / 19.80 lbs
1 207 Gs
|
1.35 kg / 2.97 lbs
1347 g / 13.2 N
|
8.08 kg / 17.82 lbs
~0 Gs
|
| 90 mm |
6.14 kg / 13.53 lbs
998 Gs
|
0.92 kg / 2.03 lbs
920 g / 9.0 N
|
5.52 kg / 12.18 lbs
~0 Gs
|
| 100 mm |
4.27 kg / 9.40 lbs
832 Gs
|
0.64 kg / 1.41 lbs
640 g / 6.3 N
|
3.84 kg / 8.46 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 100x40x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 30.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 18.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 100x40x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.84 km/h
(4.96 m/s)
|
7.37 J | |
| 30 mm |
25.80 km/h
(7.17 m/s)
|
15.41 J | |
| 50 mm |
32.20 km/h
(8.94 m/s)
|
23.99 J | |
| 100 mm |
45.13 km/h
(12.54 m/s)
|
47.14 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 100x40x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 100x40x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 131 922 Mx | 1319.2 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 100x40x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 120.01 kg | Standard |
| Woda (dno rzeki) |
137.41 kg
(+17.40 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, Au, Ag) zyskują estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy osiowym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Samozapłon
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Limity termiczne
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zagrożenie dla nawigacji
Silne pole magnetyczne wpływa negatywnie na działanie czujników w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Ostrożność wymagana
Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Zagrożenie życia
Osoby z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
Zakaz zabawy
Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Ostrzeżenie dla alergików
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
