MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030205
GTIN/EAN: 5906301812227
Średnica
62 mm [±0,1 mm]
Średnica wewnętrzna Ø
42 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
306.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
58.67 kg / 575.60 N
Indukcja magnetyczna
389.14 mT / 3891 Gs
Powłoka
[NiCuNi] nikiel
165.00 ZŁ z VAT / szt. + cena za transport
134.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie daj znać za pomocą
formularz zapytania
w sekcji kontakt.
Moc a także formę magnesów zobaczysz u nas w
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030205 |
| GTIN/EAN | 5906301812227 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 62 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 42 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 306.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 58.67 kg / 575.60 N |
| Indukcja magnetyczna ~ ? | 389.14 mT / 3891 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Poniższe dane są rezultat kalkulacji matematycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 62x42x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4472 Gs
447.2 mT
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
krytyczny poziom |
| 1 mm |
4338 Gs
433.8 mT
|
55.21 kg / 121.72 lbs
55213.2 g / 541.6 N
|
krytyczny poziom |
| 2 mm |
4201 Gs
420.1 mT
|
51.77 kg / 114.13 lbs
51768.5 g / 507.8 N
|
krytyczny poziom |
| 3 mm |
4061 Gs
406.1 mT
|
48.39 kg / 106.69 lbs
48394.9 g / 474.8 N
|
krytyczny poziom |
| 5 mm |
3781 Gs
378.1 mT
|
41.94 kg / 92.47 lbs
41942.4 g / 411.5 N
|
krytyczny poziom |
| 10 mm |
3097 Gs
309.7 mT
|
28.15 kg / 62.06 lbs
28148.0 g / 276.1 N
|
krytyczny poziom |
| 15 mm |
2485 Gs
248.5 mT
|
18.12 kg / 39.94 lbs
18118.5 g / 177.7 N
|
krytyczny poziom |
| 20 mm |
1972 Gs
197.2 mT
|
11.41 kg / 25.16 lbs
11412.7 g / 112.0 N
|
krytyczny poziom |
| 30 mm |
1239 Gs
123.9 mT
|
4.51 kg / 9.93 lbs
4505.2 g / 44.2 N
|
uwaga |
| 50 mm |
533 Gs
53.3 mT
|
0.83 kg / 1.84 lbs
832.4 g / 8.2 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 62x42x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| 1 mm | Stal (~0.2) |
11.04 kg / 24.34 lbs
11042.0 g / 108.3 N
|
| 2 mm | Stal (~0.2) |
10.35 kg / 22.83 lbs
10354.0 g / 101.6 N
|
| 3 mm | Stal (~0.2) |
9.68 kg / 21.34 lbs
9678.0 g / 94.9 N
|
| 5 mm | Stal (~0.2) |
8.39 kg / 18.49 lbs
8388.0 g / 82.3 N
|
| 10 mm | Stal (~0.2) |
5.63 kg / 12.41 lbs
5630.0 g / 55.2 N
|
| 15 mm | Stal (~0.2) |
3.62 kg / 7.99 lbs
3624.0 g / 35.6 N
|
| 20 mm | Stal (~0.2) |
2.28 kg / 5.03 lbs
2282.0 g / 22.4 N
|
| 30 mm | Stal (~0.2) |
0.90 kg / 1.99 lbs
902.0 g / 8.8 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
166.0 g / 1.6 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 62x42x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
17.60 kg / 38.80 lbs
17601.0 g / 172.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.87 kg / 12.93 lbs
5867.0 g / 57.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
29.34 kg / 64.67 lbs
29335.0 g / 287.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 62x42x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.96 kg / 4.31 lbs
1955.7 g / 19.2 N
|
| 1 mm |
|
4.89 kg / 10.78 lbs
4889.2 g / 48.0 N
|
| 2 mm |
|
9.78 kg / 21.56 lbs
9778.3 g / 95.9 N
|
| 3 mm |
|
14.67 kg / 32.34 lbs
14667.5 g / 143.9 N
|
| 5 mm |
|
24.45 kg / 53.89 lbs
24445.8 g / 239.8 N
|
| 10 mm |
|
48.89 kg / 107.79 lbs
48891.7 g / 479.6 N
|
| 11 mm |
|
53.78 kg / 118.57 lbs
53780.8 g / 527.6 N
|
| 12 mm |
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MP 62x42x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
OK |
| 40 °C | -2.2% |
57.38 kg / 126.50 lbs
57379.3 g / 562.9 N
|
OK |
| 60 °C | -4.4% |
56.09 kg / 123.65 lbs
56088.5 g / 550.2 N
|
OK |
| 80 °C | -6.6% |
54.80 kg / 120.81 lbs
54797.8 g / 537.6 N
|
|
| 100 °C | -28.8% |
41.77 kg / 92.09 lbs
41773.0 g / 409.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MP 62x42x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
264.93 kg / 584.07 lbs
5 588 Gs
|
39.74 kg / 87.61 lbs
39740 g / 389.8 N
|
N/A |
| 1 mm |
257.19 kg / 567.00 lbs
8 812 Gs
|
38.58 kg / 85.05 lbs
38578 g / 378.4 N
|
231.47 kg / 510.30 lbs
~0 Gs
|
| 2 mm |
249.32 kg / 549.66 lbs
8 676 Gs
|
37.40 kg / 82.45 lbs
37398 g / 366.9 N
|
224.39 kg / 494.69 lbs
~0 Gs
|
| 3 mm |
241.51 kg / 532.44 lbs
8 539 Gs
|
36.23 kg / 79.87 lbs
36227 g / 355.4 N
|
217.36 kg / 479.19 lbs
~0 Gs
|
| 5 mm |
226.10 kg / 498.47 lbs
8 262 Gs
|
33.92 kg / 74.77 lbs
33915 g / 332.7 N
|
203.49 kg / 448.62 lbs
~0 Gs
|
| 10 mm |
189.40 kg / 417.55 lbs
7 562 Gs
|
28.41 kg / 62.63 lbs
28409 g / 278.7 N
|
170.46 kg / 375.79 lbs
~0 Gs
|
| 20 mm |
127.11 kg / 280.22 lbs
6 195 Gs
|
19.07 kg / 42.03 lbs
19066 g / 187.0 N
|
114.40 kg / 252.20 lbs
~0 Gs
|
| 50 mm |
32.28 kg / 71.17 lbs
3 122 Gs
|
4.84 kg / 10.68 lbs
4843 g / 47.5 N
|
29.06 kg / 64.06 lbs
~0 Gs
|
| 60 mm |
20.34 kg / 44.85 lbs
2 478 Gs
|
3.05 kg / 6.73 lbs
3052 g / 29.9 N
|
18.31 kg / 40.36 lbs
~0 Gs
|
| 70 mm |
12.99 kg / 28.63 lbs
1 980 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.77 lbs
~0 Gs
|
| 80 mm |
8.43 kg / 18.59 lbs
1 595 Gs
|
1.26 kg / 2.79 lbs
1265 g / 12.4 N
|
7.59 kg / 16.73 lbs
~0 Gs
|
| 90 mm |
5.58 kg / 12.29 lbs
1 298 Gs
|
0.84 kg / 1.84 lbs
836 g / 8.2 N
|
5.02 kg / 11.06 lbs
~0 Gs
|
| 100 mm |
3.76 kg / 8.29 lbs
1 065 Gs
|
0.56 kg / 1.24 lbs
564 g / 5.5 N
|
3.38 kg / 7.46 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 62x42x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 32.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 25.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 20.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 62x42x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.65 km/h
(4.90 m/s)
|
3.68 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
7.57 J | |
| 50 mm |
31.49 km/h
(8.75 m/s)
|
11.72 J | |
| 100 mm |
44.16 km/h
(12.27 m/s)
|
23.04 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 62x42x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 62x42x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 100 906 Mx | 1009.1 µWb |
| Współczynnik Pc | 0.64 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 62x42x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 58.67 kg | Standard |
| Woda (dno rzeki) |
67.18 kg
(+8.51 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.64
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości przynajmniej 10 mm
- o szlifowanej powierzchni kontaktu
- przy bezpośrednim styku (bez powłok)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Dystans (pomiędzy magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość podłoża – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Urazy ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Ryzyko rozmagnesowania
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Bezpieczny dystans
Potężne oddziaływanie może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Pył jest łatwopalny
Proszek generowany podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Chronić przed dziećmi
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Magnesy są kruche
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Alergia na nikiel
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
