MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030205
GTIN/EAN: 5906301812227
Średnica
62 mm [±0,1 mm]
Średnica wewnętrzna Ø
42 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
306.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
58.67 kg / 575.60 N
Indukcja magnetyczna
389.14 mT / 3891 Gs
Powłoka
[NiCuNi] nikiel
165.00 ZŁ z VAT / szt. + cena za transport
134.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie pisz przez
nasz formularz online
na stronie kontakt.
Moc i budowę magnesów zobaczysz u nas w
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna - MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030205 |
| GTIN/EAN | 5906301812227 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 62 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 42 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 306.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 58.67 kg / 575.60 N |
| Indukcja magnetyczna ~ ? | 389.14 mT / 3891 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Poniższe wartości stanowią wynik kalkulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MP 62x42x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4472 Gs
447.2 mT
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
miażdżący |
| 1 mm |
4338 Gs
433.8 mT
|
55.21 kg / 121.72 lbs
55213.2 g / 541.6 N
|
miażdżący |
| 2 mm |
4201 Gs
420.1 mT
|
51.77 kg / 114.13 lbs
51768.5 g / 507.8 N
|
miażdżący |
| 3 mm |
4061 Gs
406.1 mT
|
48.39 kg / 106.69 lbs
48394.9 g / 474.8 N
|
miażdżący |
| 5 mm |
3781 Gs
378.1 mT
|
41.94 kg / 92.47 lbs
41942.4 g / 411.5 N
|
miażdżący |
| 10 mm |
3097 Gs
309.7 mT
|
28.15 kg / 62.06 lbs
28148.0 g / 276.1 N
|
miażdżący |
| 15 mm |
2485 Gs
248.5 mT
|
18.12 kg / 39.94 lbs
18118.5 g / 177.7 N
|
miażdżący |
| 20 mm |
1972 Gs
197.2 mT
|
11.41 kg / 25.16 lbs
11412.7 g / 112.0 N
|
miażdżący |
| 30 mm |
1239 Gs
123.9 mT
|
4.51 kg / 9.93 lbs
4505.2 g / 44.2 N
|
mocny |
| 50 mm |
533 Gs
53.3 mT
|
0.83 kg / 1.84 lbs
832.4 g / 8.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MP 62x42x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| 1 mm | Stal (~0.2) |
11.04 kg / 24.34 lbs
11042.0 g / 108.3 N
|
| 2 mm | Stal (~0.2) |
10.35 kg / 22.83 lbs
10354.0 g / 101.6 N
|
| 3 mm | Stal (~0.2) |
9.68 kg / 21.34 lbs
9678.0 g / 94.9 N
|
| 5 mm | Stal (~0.2) |
8.39 kg / 18.49 lbs
8388.0 g / 82.3 N
|
| 10 mm | Stal (~0.2) |
5.63 kg / 12.41 lbs
5630.0 g / 55.2 N
|
| 15 mm | Stal (~0.2) |
3.62 kg / 7.99 lbs
3624.0 g / 35.6 N
|
| 20 mm | Stal (~0.2) |
2.28 kg / 5.03 lbs
2282.0 g / 22.4 N
|
| 30 mm | Stal (~0.2) |
0.90 kg / 1.99 lbs
902.0 g / 8.8 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
166.0 g / 1.6 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 62x42x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
17.60 kg / 38.80 lbs
17601.0 g / 172.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.87 kg / 12.93 lbs
5867.0 g / 57.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
29.34 kg / 64.67 lbs
29335.0 g / 287.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 62x42x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.96 kg / 4.31 lbs
1955.7 g / 19.2 N
|
| 1 mm |
|
4.89 kg / 10.78 lbs
4889.2 g / 48.0 N
|
| 2 mm |
|
9.78 kg / 21.56 lbs
9778.3 g / 95.9 N
|
| 3 mm |
|
14.67 kg / 32.34 lbs
14667.5 g / 143.9 N
|
| 5 mm |
|
24.45 kg / 53.89 lbs
24445.8 g / 239.8 N
|
| 10 mm |
|
48.89 kg / 107.79 lbs
48891.7 g / 479.6 N
|
| 11 mm |
|
53.78 kg / 118.57 lbs
53780.8 g / 527.6 N
|
| 12 mm |
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MP 62x42x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
OK |
| 40 °C | -2.2% |
57.38 kg / 126.50 lbs
57379.3 g / 562.9 N
|
OK |
| 60 °C | -4.4% |
56.09 kg / 123.65 lbs
56088.5 g / 550.2 N
|
OK |
| 80 °C | -6.6% |
54.80 kg / 120.81 lbs
54797.8 g / 537.6 N
|
|
| 100 °C | -28.8% |
41.77 kg / 92.09 lbs
41773.0 g / 409.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 62x42x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
264.93 kg / 584.07 lbs
5 588 Gs
|
39.74 kg / 87.61 lbs
39740 g / 389.8 N
|
N/A |
| 1 mm |
257.19 kg / 567.00 lbs
8 812 Gs
|
38.58 kg / 85.05 lbs
38578 g / 378.4 N
|
231.47 kg / 510.30 lbs
~0 Gs
|
| 2 mm |
249.32 kg / 549.66 lbs
8 676 Gs
|
37.40 kg / 82.45 lbs
37398 g / 366.9 N
|
224.39 kg / 494.69 lbs
~0 Gs
|
| 3 mm |
241.51 kg / 532.44 lbs
8 539 Gs
|
36.23 kg / 79.87 lbs
36227 g / 355.4 N
|
217.36 kg / 479.19 lbs
~0 Gs
|
| 5 mm |
226.10 kg / 498.47 lbs
8 262 Gs
|
33.92 kg / 74.77 lbs
33915 g / 332.7 N
|
203.49 kg / 448.62 lbs
~0 Gs
|
| 10 mm |
189.40 kg / 417.55 lbs
7 562 Gs
|
28.41 kg / 62.63 lbs
28409 g / 278.7 N
|
170.46 kg / 375.79 lbs
~0 Gs
|
| 20 mm |
127.11 kg / 280.22 lbs
6 195 Gs
|
19.07 kg / 42.03 lbs
19066 g / 187.0 N
|
114.40 kg / 252.20 lbs
~0 Gs
|
| 50 mm |
32.28 kg / 71.17 lbs
3 122 Gs
|
4.84 kg / 10.68 lbs
4843 g / 47.5 N
|
29.06 kg / 64.06 lbs
~0 Gs
|
| 60 mm |
20.34 kg / 44.85 lbs
2 478 Gs
|
3.05 kg / 6.73 lbs
3052 g / 29.9 N
|
18.31 kg / 40.36 lbs
~0 Gs
|
| 70 mm |
12.99 kg / 28.63 lbs
1 980 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.77 lbs
~0 Gs
|
| 80 mm |
8.43 kg / 18.59 lbs
1 595 Gs
|
1.26 kg / 2.79 lbs
1265 g / 12.4 N
|
7.59 kg / 16.73 lbs
~0 Gs
|
| 90 mm |
5.58 kg / 12.29 lbs
1 298 Gs
|
0.84 kg / 1.84 lbs
836 g / 8.2 N
|
5.02 kg / 11.06 lbs
~0 Gs
|
| 100 mm |
3.76 kg / 8.29 lbs
1 065 Gs
|
0.56 kg / 1.24 lbs
564 g / 5.5 N
|
3.38 kg / 7.46 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 62x42x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 32.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 25.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 20.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MP 62x42x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.65 km/h
(4.90 m/s)
|
3.68 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
7.57 J | |
| 50 mm |
31.49 km/h
(8.75 m/s)
|
11.72 J | |
| 100 mm |
44.16 km/h
(12.27 m/s)
|
23.04 J |
Tabela 9: Parametry powłoki (trwałość)
MP 62x42x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 62x42x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 100 906 Mx | 1009.1 µWb |
| Współczynnik Pc | 0.64 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 62x42x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 58.67 kg | Standard |
| Woda (dno rzeki) |
67.18 kg
(+8.51 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.64
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią idealnie równą
- przy całkowitym braku odstępu (bez farby)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (między magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia ucieka w powietrzu.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Zasady BHP dla użytkowników magnesów
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Elektronika precyzyjna
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Bezpieczny dystans
Potężne pole magnetyczne może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Wpływ na zdrowie
Pacjenci z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Ryzyko złamań
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Alergia na nikiel
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Temperatura pracy
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Łatwopalność
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
