MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030205
GTIN/EAN: 5906301812227
Średnica
62 mm [±0,1 mm]
Średnica wewnętrzna Ø
42 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
306.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
58.67 kg / 575.60 N
Indukcja magnetyczna
389.14 mT / 3891 Gs
Powłoka
[NiCuNi] nikiel
165.00 ZŁ z VAT / szt. + cena za transport
134.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie daj znać korzystając z
formularz kontaktowy
przez naszą stronę.
Moc a także budowę magnesu neodymowego zweryfikujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030205 |
| GTIN/EAN | 5906301812227 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 62 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 42 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 306.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 58.67 kg / 575.60 N |
| Indukcja magnetyczna ~ ? | 389.14 mT / 3891 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Poniższe informacje są rezultat symulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MP 62x42x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4472 Gs
447.2 mT
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
miażdżący |
| 1 mm |
4338 Gs
433.8 mT
|
55.21 kg / 121.72 lbs
55213.2 g / 541.6 N
|
miażdżący |
| 2 mm |
4201 Gs
420.1 mT
|
51.77 kg / 114.13 lbs
51768.5 g / 507.8 N
|
miażdżący |
| 3 mm |
4061 Gs
406.1 mT
|
48.39 kg / 106.69 lbs
48394.9 g / 474.8 N
|
miażdżący |
| 5 mm |
3781 Gs
378.1 mT
|
41.94 kg / 92.47 lbs
41942.4 g / 411.5 N
|
miażdżący |
| 10 mm |
3097 Gs
309.7 mT
|
28.15 kg / 62.06 lbs
28148.0 g / 276.1 N
|
miażdżący |
| 15 mm |
2485 Gs
248.5 mT
|
18.12 kg / 39.94 lbs
18118.5 g / 177.7 N
|
miażdżący |
| 20 mm |
1972 Gs
197.2 mT
|
11.41 kg / 25.16 lbs
11412.7 g / 112.0 N
|
miażdżący |
| 30 mm |
1239 Gs
123.9 mT
|
4.51 kg / 9.93 lbs
4505.2 g / 44.2 N
|
uwaga |
| 50 mm |
533 Gs
53.3 mT
|
0.83 kg / 1.84 lbs
832.4 g / 8.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MP 62x42x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| 1 mm | Stal (~0.2) |
11.04 kg / 24.34 lbs
11042.0 g / 108.3 N
|
| 2 mm | Stal (~0.2) |
10.35 kg / 22.83 lbs
10354.0 g / 101.6 N
|
| 3 mm | Stal (~0.2) |
9.68 kg / 21.34 lbs
9678.0 g / 94.9 N
|
| 5 mm | Stal (~0.2) |
8.39 kg / 18.49 lbs
8388.0 g / 82.3 N
|
| 10 mm | Stal (~0.2) |
5.63 kg / 12.41 lbs
5630.0 g / 55.2 N
|
| 15 mm | Stal (~0.2) |
3.62 kg / 7.99 lbs
3624.0 g / 35.6 N
|
| 20 mm | Stal (~0.2) |
2.28 kg / 5.03 lbs
2282.0 g / 22.4 N
|
| 30 mm | Stal (~0.2) |
0.90 kg / 1.99 lbs
902.0 g / 8.8 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
166.0 g / 1.6 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 62x42x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
17.60 kg / 38.80 lbs
17601.0 g / 172.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.87 kg / 12.93 lbs
5867.0 g / 57.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
29.34 kg / 64.67 lbs
29335.0 g / 287.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 62x42x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.96 kg / 4.31 lbs
1955.7 g / 19.2 N
|
| 1 mm |
|
4.89 kg / 10.78 lbs
4889.2 g / 48.0 N
|
| 2 mm |
|
9.78 kg / 21.56 lbs
9778.3 g / 95.9 N
|
| 3 mm |
|
14.67 kg / 32.34 lbs
14667.5 g / 143.9 N
|
| 5 mm |
|
24.45 kg / 53.89 lbs
24445.8 g / 239.8 N
|
| 10 mm |
|
48.89 kg / 107.79 lbs
48891.7 g / 479.6 N
|
| 11 mm |
|
53.78 kg / 118.57 lbs
53780.8 g / 527.6 N
|
| 12 mm |
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 62x42x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
OK |
| 40 °C | -2.2% |
57.38 kg / 126.50 lbs
57379.3 g / 562.9 N
|
OK |
| 60 °C | -4.4% |
56.09 kg / 123.65 lbs
56088.5 g / 550.2 N
|
OK |
| 80 °C | -6.6% |
54.80 kg / 120.81 lbs
54797.8 g / 537.6 N
|
|
| 100 °C | -28.8% |
41.77 kg / 92.09 lbs
41773.0 g / 409.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MP 62x42x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
264.93 kg / 584.07 lbs
5 588 Gs
|
39.74 kg / 87.61 lbs
39740 g / 389.8 N
|
N/A |
| 1 mm |
257.19 kg / 567.00 lbs
8 812 Gs
|
38.58 kg / 85.05 lbs
38578 g / 378.4 N
|
231.47 kg / 510.30 lbs
~0 Gs
|
| 2 mm |
249.32 kg / 549.66 lbs
8 676 Gs
|
37.40 kg / 82.45 lbs
37398 g / 366.9 N
|
224.39 kg / 494.69 lbs
~0 Gs
|
| 3 mm |
241.51 kg / 532.44 lbs
8 539 Gs
|
36.23 kg / 79.87 lbs
36227 g / 355.4 N
|
217.36 kg / 479.19 lbs
~0 Gs
|
| 5 mm |
226.10 kg / 498.47 lbs
8 262 Gs
|
33.92 kg / 74.77 lbs
33915 g / 332.7 N
|
203.49 kg / 448.62 lbs
~0 Gs
|
| 10 mm |
189.40 kg / 417.55 lbs
7 562 Gs
|
28.41 kg / 62.63 lbs
28409 g / 278.7 N
|
170.46 kg / 375.79 lbs
~0 Gs
|
| 20 mm |
127.11 kg / 280.22 lbs
6 195 Gs
|
19.07 kg / 42.03 lbs
19066 g / 187.0 N
|
114.40 kg / 252.20 lbs
~0 Gs
|
| 50 mm |
32.28 kg / 71.17 lbs
3 122 Gs
|
4.84 kg / 10.68 lbs
4843 g / 47.5 N
|
29.06 kg / 64.06 lbs
~0 Gs
|
| 60 mm |
20.34 kg / 44.85 lbs
2 478 Gs
|
3.05 kg / 6.73 lbs
3052 g / 29.9 N
|
18.31 kg / 40.36 lbs
~0 Gs
|
| 70 mm |
12.99 kg / 28.63 lbs
1 980 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.77 lbs
~0 Gs
|
| 80 mm |
8.43 kg / 18.59 lbs
1 595 Gs
|
1.26 kg / 2.79 lbs
1265 g / 12.4 N
|
7.59 kg / 16.73 lbs
~0 Gs
|
| 90 mm |
5.58 kg / 12.29 lbs
1 298 Gs
|
0.84 kg / 1.84 lbs
836 g / 8.2 N
|
5.02 kg / 11.06 lbs
~0 Gs
|
| 100 mm |
3.76 kg / 8.29 lbs
1 065 Gs
|
0.56 kg / 1.24 lbs
564 g / 5.5 N
|
3.38 kg / 7.46 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 62x42x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 32.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 25.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 20.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 62x42x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.65 km/h
(4.90 m/s)
|
3.68 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
7.57 J | |
| 50 mm |
31.49 km/h
(8.75 m/s)
|
11.72 J | |
| 100 mm |
44.16 km/h
(12.27 m/s)
|
23.04 J |
Tabela 9: Parametry powłoki (trwałość)
MP 62x42x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 62x42x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 100 906 Mx | 1009.1 µWb |
| Współczynnik Pc | 0.64 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 62x42x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 58.67 kg | Standard |
| Woda (dno rzeki) |
67.18 kg
(+8.51 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.64
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni styku
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy prostopadłym wektorze siły (kąt 90 stopni)
- przy temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Bezpieczna praca przy magnesach z neodymem
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zagrożenie dla najmłodszych
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem dzieci i zwierząt.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Kompas i GPS
Pamiętaj: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Zagrożenie dla elektroniki
Bardzo silne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Ogromna siła
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Ryzyko uczulenia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
