MP 40x22x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030344
GTIN/EAN: 5906301812296
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
22 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
65.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.34 kg / 189.71 N
Indukcja magnetyczna
277.22 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
40.59 ZŁ z VAT / szt. + cena za transport
33.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie daj znać przez
nasz formularz online
na naszej stronie.
Siłę i budowę magnesu testujesz u nas w
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MP 40x22x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x22x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030344 |
| GTIN/EAN | 5906301812296 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 22 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 65.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.34 kg / 189.71 N |
| Indukcja magnetyczna ~ ? | 277.22 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Przedstawione wartości są wynik analizy inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MP 40x22x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
miażdżący |
| 1 mm |
5005 Gs
500.5 mT
|
17.46 kg / 38.48 lbs
17455.9 g / 171.2 N
|
miażdżący |
| 2 mm |
4739 Gs
473.9 mT
|
15.65 kg / 34.50 lbs
15647.5 g / 153.5 N
|
miażdżący |
| 3 mm |
4475 Gs
447.5 mT
|
13.95 kg / 30.75 lbs
13950.0 g / 136.8 N
|
miażdżący |
| 5 mm |
3960 Gs
396.0 mT
|
10.93 kg / 24.09 lbs
10927.7 g / 107.2 N
|
miażdżący |
| 10 mm |
2832 Gs
283.2 mT
|
5.59 kg / 12.32 lbs
5589.2 g / 54.8 N
|
uwaga |
| 15 mm |
1990 Gs
199.0 mT
|
2.76 kg / 6.09 lbs
2760.5 g / 27.1 N
|
uwaga |
| 20 mm |
1407 Gs
140.7 mT
|
1.38 kg / 3.04 lbs
1379.2 g / 13.5 N
|
bezpieczny |
| 30 mm |
745 Gs
74.5 mT
|
0.39 kg / 0.85 lbs
386.2 g / 3.8 N
|
bezpieczny |
| 50 mm |
268 Gs
26.8 mT
|
0.05 kg / 0.11 lbs
50.1 g / 0.5 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 40x22x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| 1 mm | Stal (~0.2) |
3.49 kg / 7.70 lbs
3492.0 g / 34.3 N
|
| 2 mm | Stal (~0.2) |
3.13 kg / 6.90 lbs
3130.0 g / 30.7 N
|
| 3 mm | Stal (~0.2) |
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.82 lbs
2186.0 g / 21.4 N
|
| 10 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1118.0 g / 11.0 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| 20 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 40x22x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.80 kg / 12.79 lbs
5802.0 g / 56.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.93 kg / 4.26 lbs
1934.0 g / 19.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.67 kg / 21.32 lbs
9670.0 g / 94.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 40x22x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 2.13 lbs
967.0 g / 9.5 N
|
| 1 mm |
|
2.42 kg / 5.33 lbs
2417.5 g / 23.7 N
|
| 2 mm |
|
4.84 kg / 10.66 lbs
4835.0 g / 47.4 N
|
| 3 mm |
|
7.25 kg / 15.99 lbs
7252.5 g / 71.1 N
|
| 5 mm |
|
12.09 kg / 26.65 lbs
12087.5 g / 118.6 N
|
| 10 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 11 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 12 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MP 40x22x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
OK |
| 40 °C | -2.2% |
18.91 kg / 41.70 lbs
18914.5 g / 185.6 N
|
OK |
| 60 °C | -4.4% |
18.49 kg / 40.76 lbs
18489.0 g / 181.4 N
|
OK |
| 80 °C | -6.6% |
18.06 kg / 39.82 lbs
18063.6 g / 177.2 N
|
|
| 100 °C | -28.8% |
13.77 kg / 30.36 lbs
13770.1 g / 135.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 40x22x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
171.37 kg / 377.80 lbs
5 920 Gs
|
25.71 kg / 56.67 lbs
25705 g / 252.2 N
|
N/A |
| 1 mm |
163.01 kg / 359.38 lbs
10 277 Gs
|
24.45 kg / 53.91 lbs
24452 g / 239.9 N
|
146.71 kg / 323.44 lbs
~0 Gs
|
| 2 mm |
154.67 kg / 341.00 lbs
10 011 Gs
|
23.20 kg / 51.15 lbs
23201 g / 227.6 N
|
139.21 kg / 306.90 lbs
~0 Gs
|
| 3 mm |
146.55 kg / 323.08 lbs
9 744 Gs
|
21.98 kg / 48.46 lbs
21982 g / 215.6 N
|
131.89 kg / 290.77 lbs
~0 Gs
|
| 5 mm |
131.00 kg / 288.81 lbs
9 213 Gs
|
19.65 kg / 43.32 lbs
19650 g / 192.8 N
|
117.90 kg / 259.92 lbs
~0 Gs
|
| 10 mm |
96.83 kg / 213.47 lbs
7 921 Gs
|
14.52 kg / 32.02 lbs
14524 g / 142.5 N
|
87.15 kg / 192.12 lbs
~0 Gs
|
| 20 mm |
49.53 kg / 109.18 lbs
5 665 Gs
|
7.43 kg / 16.38 lbs
7429 g / 72.9 N
|
44.57 kg / 98.27 lbs
~0 Gs
|
| 50 mm |
6.33 kg / 13.95 lbs
2 025 Gs
|
0.95 kg / 2.09 lbs
949 g / 9.3 N
|
5.69 kg / 12.55 lbs
~0 Gs
|
| 60 mm |
3.42 kg / 7.55 lbs
1 489 Gs
|
0.51 kg / 1.13 lbs
513 g / 5.0 N
|
3.08 kg / 6.79 lbs
~0 Gs
|
| 70 mm |
1.94 kg / 4.27 lbs
1 120 Gs
|
0.29 kg / 0.64 lbs
290 g / 2.8 N
|
1.74 kg / 3.84 lbs
~0 Gs
|
| 80 mm |
1.14 kg / 2.52 lbs
860 Gs
|
0.17 kg / 0.38 lbs
171 g / 1.7 N
|
1.03 kg / 2.27 lbs
~0 Gs
|
| 90 mm |
0.70 kg / 1.54 lbs
673 Gs
|
0.10 kg / 0.23 lbs
105 g / 1.0 N
|
0.63 kg / 1.39 lbs
~0 Gs
|
| 100 mm |
0.44 kg / 0.98 lbs
536 Gs
|
0.07 kg / 0.15 lbs
67 g / 0.7 N
|
0.40 kg / 0.88 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 40x22x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 40x22x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.18 km/h
(5.61 m/s)
|
1.03 J | |
| 30 mm |
30.33 km/h
(8.43 m/s)
|
2.33 J | |
| 50 mm |
38.74 km/h
(10.76 m/s)
|
3.81 J | |
| 100 mm |
54.70 km/h
(15.20 m/s)
|
7.59 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 40x22x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 40x22x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 54 070 Mx | 540.7 µWb |
| Współczynnik Pc | 0.81 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 40x22x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.34 kg | Standard |
| Woda (dno rzeki) |
22.14 kg
(+2.80 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.81
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni kontaktu
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i udźwig.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Ochrona urządzeń
Ekstremalne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Zakaz obróbki
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Temperatura pracy
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Siła zgniatająca
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Rozprysk materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Niebezpieczeństwo dla rozruszników
Osoby z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Dla uczulonych
Część populacji posiada uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może wywołać zaczerwienienie skóry. Sugerujemy stosowanie rękawiczek ochronnych.
Zagrożenie dla najmłodszych
Magnesy neodymowe nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Wpływ na smartfony
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
