MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030250
GTIN/EAN: 5906301812265
Średnica
30 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
15.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.64 kg / 35.69 N
Indukcja magnetyczna
121.58 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub daj znać za pomocą
formularz
przez naszą stronę.
Właściwości oraz kształt magnesu neodymowego obliczysz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja techniczna produktu - MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030250 |
| GTIN/EAN | 5906301812265 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 30 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 15.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.64 kg / 35.69 N |
| Indukcja magnetyczna ~ ? | 121.58 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MP 30x7/3x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1039 Gs
103.9 mT
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
średnie ryzyko |
| 1 mm |
1015 Gs
101.5 mT
|
3.48 kg / 7.67 lbs
3477.6 g / 34.1 N
|
średnie ryzyko |
| 2 mm |
980 Gs
98.0 mT
|
3.24 kg / 7.14 lbs
3240.7 g / 31.8 N
|
średnie ryzyko |
| 3 mm |
936 Gs
93.6 mT
|
2.95 kg / 6.51 lbs
2951.6 g / 29.0 N
|
średnie ryzyko |
| 5 mm |
827 Gs
82.7 mT
|
2.31 kg / 5.08 lbs
2305.8 g / 22.6 N
|
średnie ryzyko |
| 10 mm |
539 Gs
53.9 mT
|
0.98 kg / 2.16 lbs
981.0 g / 9.6 N
|
niskie ryzyko |
| 15 mm |
329 Gs
32.9 mT
|
0.37 kg / 0.80 lbs
365.1 g / 3.6 N
|
niskie ryzyko |
| 20 mm |
202 Gs
20.2 mT
|
0.14 kg / 0.30 lbs
137.9 g / 1.4 N
|
niskie ryzyko |
| 30 mm |
85 Gs
8.5 mT
|
0.02 kg / 0.05 lbs
24.6 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 30x7/3x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.73 kg / 1.60 lbs
728.0 g / 7.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| 2 mm | Stal (~0.2) |
0.65 kg / 1.43 lbs
648.0 g / 6.4 N
|
| 3 mm | Stal (~0.2) |
0.59 kg / 1.30 lbs
590.0 g / 5.8 N
|
| 5 mm | Stal (~0.2) |
0.46 kg / 1.02 lbs
462.0 g / 4.5 N
|
| 10 mm | Stal (~0.2) |
0.20 kg / 0.43 lbs
196.0 g / 1.9 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 30x7/3x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.09 kg / 2.41 lbs
1092.0 g / 10.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.73 kg / 1.60 lbs
728.0 g / 7.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.82 kg / 4.01 lbs
1820.0 g / 17.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 30x7/3x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| 1 mm |
|
0.91 kg / 2.01 lbs
910.0 g / 8.9 N
|
| 2 mm |
|
1.82 kg / 4.01 lbs
1820.0 g / 17.9 N
|
| 3 mm |
|
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| 5 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
| 10 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
| 11 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
| 12 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MP 30x7/3x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
OK |
| 40 °C | -2.2% |
3.56 kg / 7.85 lbs
3559.9 g / 34.9 N
|
OK |
| 60 °C | -4.4% |
3.48 kg / 7.67 lbs
3479.8 g / 34.1 N
|
|
| 80 °C | -6.6% |
3.40 kg / 7.50 lbs
3399.8 g / 33.4 N
|
|
| 100 °C | -28.8% |
2.59 kg / 5.71 lbs
2591.7 g / 25.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 30x7/3x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.96 kg / 8.73 lbs
1 995 Gs
|
0.59 kg / 1.31 lbs
594 g / 5.8 N
|
N/A |
| 1 mm |
3.88 kg / 8.56 lbs
2 058 Gs
|
0.58 kg / 1.28 lbs
582 g / 5.7 N
|
3.49 kg / 7.70 lbs
~0 Gs
|
| 2 mm |
3.78 kg / 8.34 lbs
2 031 Gs
|
0.57 kg / 1.25 lbs
567 g / 5.6 N
|
3.40 kg / 7.50 lbs
~0 Gs
|
| 3 mm |
3.66 kg / 8.07 lbs
1 998 Gs
|
0.55 kg / 1.21 lbs
549 g / 5.4 N
|
3.30 kg / 7.26 lbs
~0 Gs
|
| 5 mm |
3.37 kg / 7.43 lbs
1 918 Gs
|
0.51 kg / 1.12 lbs
506 g / 5.0 N
|
3.04 kg / 6.69 lbs
~0 Gs
|
| 10 mm |
2.51 kg / 5.53 lbs
1 654 Gs
|
0.38 kg / 0.83 lbs
376 g / 3.7 N
|
2.26 kg / 4.97 lbs
~0 Gs
|
| 20 mm |
1.07 kg / 2.35 lbs
1 079 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
258 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
171 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
118 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
84 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 30x7/3x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 30x7/3x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.73 km/h
(4.92 m/s)
|
0.19 J | |
| 30 mm |
26.67 km/h
(7.41 m/s)
|
0.43 J | |
| 50 mm |
34.29 km/h
(9.53 m/s)
|
0.71 J | |
| 100 mm |
48.48 km/h
(13.47 m/s)
|
1.43 J |
Tabela 9: Parametry powłoki (trwałość)
MP 30x7/3x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 30x7/3x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 395 Mx | 84.0 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MP 30x7/3x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.64 kg | Standard |
| Woda (dno rzeki) |
4.17 kg
(+0.53 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi jedynie ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną oczyszczoną i gładką
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (pomiędzy magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia jest tracona w powietrzu.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig mierzono używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Urazy ciała
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Smartfony i tablety
Ważna informacja: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Świadome użytkowanie
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Rozprysk materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Łatwopalność
Pył generowany podczas obróbki magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
