SM 32x450 [2xM8] / N42 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130303
GTIN/EAN: 5906301812968
Średnica Ø
32 mm [±1 mm]
Wysokość
450 mm [±1 mm]
Waga
2410 g
Strumień magnetyczny
~ 8 000 Gauss [±5%]
1340.70 ZŁ z VAT / szt. + cena za transport
1090.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie napisz przez
formularz zgłoszeniowy
w sekcji kontakt.
Parametry oraz formę magnesów neodymowych testujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
SM 32x450 [2xM8] / N42 - separator magnetyczny
Specyfikacja / charakterystyka SM 32x450 [2xM8] / N42 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130303 |
| GTIN/EAN | 5906301812968 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 32 mm [±1 mm] |
| Wysokość | 450 mm [±1 mm] |
| Waga | 2410 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 8 000 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 17 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N42
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.9-13.2 | kGs |
| remanencja Br [min. - maks.] ? | 1290-1320 | mT |
| koercja bHc ? | 10.8-12.0 | kOe |
| koercja bHc ? | 860-955 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 40-42 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 318-334 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - filtr magnetyczny
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- z powierzchnią idealnie równą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Zagrożenie fizyczne
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Tylko dla dorosłych
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Rozprysk materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Alergia na nikiel
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Wpływ na zdrowie
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zakaz obróbki
Proszek generowany podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uszkodzenia czujników
Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
