MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030196
GTIN/EAN: 5906301812135
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
16.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.16 kg / 70.21 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
5.90 ZŁ z VAT / szt. + cena za transport
4.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo pisz przez
formularz zapytania
przez naszą stronę.
Właściwości a także budowę magnesu przetestujesz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030196 |
| GTIN/EAN | 5906301812135 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 16.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.16 kg / 70.21 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Niniejsze dane stanowią rezultat analizy matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MP 25x8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
mocny |
| 1 mm |
5310 Gs
531.0 mT
|
6.05 kg / 13.33 lbs
6048.6 g / 59.3 N
|
mocny |
| 2 mm |
4846 Gs
484.6 mT
|
5.04 kg / 11.10 lbs
5036.9 g / 49.4 N
|
mocny |
| 3 mm |
4397 Gs
439.7 mT
|
4.15 kg / 9.15 lbs
4148.2 g / 40.7 N
|
mocny |
| 5 mm |
3576 Gs
357.6 mT
|
2.74 kg / 6.05 lbs
2743.2 g / 26.9 N
|
mocny |
| 10 mm |
2073 Gs
207.3 mT
|
0.92 kg / 2.03 lbs
921.6 g / 9.0 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.33 kg / 0.72 lbs
325.2 g / 3.2 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.03 kg / 0.06 lbs
27.2 g / 0.3 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 25x8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.43 kg / 3.16 lbs
1432.0 g / 14.0 N
|
| 1 mm | Stal (~0.2) |
1.21 kg / 2.67 lbs
1210.0 g / 11.9 N
|
| 2 mm | Stal (~0.2) |
1.01 kg / 2.22 lbs
1008.0 g / 9.9 N
|
| 3 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
830.0 g / 8.1 N
|
| 5 mm | Stal (~0.2) |
0.55 kg / 1.21 lbs
548.0 g / 5.4 N
|
| 10 mm | Stal (~0.2) |
0.18 kg / 0.41 lbs
184.0 g / 1.8 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 25x8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.15 kg / 4.74 lbs
2148.0 g / 21.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.43 kg / 3.16 lbs
1432.0 g / 14.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 1.58 lbs
716.0 g / 7.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.58 kg / 7.89 lbs
3580.0 g / 35.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 25x8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 1.58 lbs
716.0 g / 7.0 N
|
| 1 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 2 mm |
|
3.58 kg / 7.89 lbs
3580.0 g / 35.1 N
|
| 3 mm |
|
5.37 kg / 11.84 lbs
5370.0 g / 52.7 N
|
| 5 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
| 10 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
| 11 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
| 12 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 25x8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
OK |
| 40 °C | -2.2% |
7.00 kg / 15.44 lbs
7002.5 g / 68.7 N
|
OK |
| 60 °C | -4.4% |
6.84 kg / 15.09 lbs
6845.0 g / 67.1 N
|
OK |
| 80 °C | -6.6% |
6.69 kg / 14.74 lbs
6687.4 g / 65.6 N
|
|
| 100 °C | -28.8% |
5.10 kg / 11.24 lbs
5097.9 g / 50.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MP 25x8x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
82.42 kg / 181.72 lbs
6 082 Gs
|
12.36 kg / 27.26 lbs
12364 g / 121.3 N
|
N/A |
| 1 mm |
75.95 kg / 167.44 lbs
11 091 Gs
|
11.39 kg / 25.12 lbs
11392 g / 111.8 N
|
68.35 kg / 150.69 lbs
~0 Gs
|
| 2 mm |
69.63 kg / 153.51 lbs
10 620 Gs
|
10.44 kg / 23.03 lbs
10445 g / 102.5 N
|
62.67 kg / 138.16 lbs
~0 Gs
|
| 3 mm |
63.64 kg / 140.29 lbs
10 153 Gs
|
9.55 kg / 21.04 lbs
9545 g / 93.6 N
|
57.27 kg / 126.26 lbs
~0 Gs
|
| 5 mm |
52.69 kg / 116.16 lbs
9 238 Gs
|
7.90 kg / 17.42 lbs
7903 g / 77.5 N
|
47.42 kg / 104.54 lbs
~0 Gs
|
| 10 mm |
31.58 kg / 69.62 lbs
7 152 Gs
|
4.74 kg / 10.44 lbs
4737 g / 46.5 N
|
28.42 kg / 62.66 lbs
~0 Gs
|
| 20 mm |
10.61 kg / 23.39 lbs
4 145 Gs
|
1.59 kg / 3.51 lbs
1591 g / 15.6 N
|
9.55 kg / 21.05 lbs
~0 Gs
|
| 50 mm |
0.65 kg / 1.43 lbs
1 024 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.69 lbs
712 Gs
|
0.05 kg / 0.10 lbs
47 g / 0.5 N
|
0.28 kg / 0.62 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 25x8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MP 25x8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.62 km/h
(6.28 m/s)
|
0.33 J | |
| 30 mm |
36.45 km/h
(10.13 m/s)
|
0.85 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.41 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
2.81 J |
Tabela 9: Parametry powłoki (trwałość)
MP 25x8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 25x8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 536 Mx | 245.4 µWb |
| Współczynnik Pc | 1.03 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.16 kg | Standard |
| Woda (dno rzeki) |
8.20 kg
(+1.04 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.03
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi jedynie ~1% (teoretycznie).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Ryzyko złamań
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko połknięcia
Bezwzględnie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Niklowa powłoka a alergia
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Bezpieczna praca
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Samozapłon
Proszek generowany podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Elektronika precyzyjna
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ochrona oczu
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Niszczenie danych
Potężne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
