MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030196
GTIN/EAN: 5906301812135
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
16.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.16 kg / 70.21 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
5.90 ZŁ z VAT / szt. + cena za transport
4.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo daj znać poprzez
formularz zapytania
przez naszą stronę.
Udźwig a także budowę magnesu zobaczysz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry produktu - MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030196 |
| GTIN/EAN | 5906301812135 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 16.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.16 kg / 70.21 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe dane są bezpośredni efekt symulacji matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MP 25x8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
uwaga |
| 1 mm |
5310 Gs
531.0 mT
|
6.05 kg / 13.33 lbs
6048.6 g / 59.3 N
|
uwaga |
| 2 mm |
4846 Gs
484.6 mT
|
5.04 kg / 11.10 lbs
5036.9 g / 49.4 N
|
uwaga |
| 3 mm |
4397 Gs
439.7 mT
|
4.15 kg / 9.15 lbs
4148.2 g / 40.7 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
2.74 kg / 6.05 lbs
2743.2 g / 26.9 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
0.92 kg / 2.03 lbs
921.6 g / 9.0 N
|
niskie ryzyko |
| 15 mm |
1231 Gs
123.1 mT
|
0.33 kg / 0.72 lbs
325.2 g / 3.2 N
|
niskie ryzyko |
| 20 mm |
773 Gs
77.3 mT
|
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
niskie ryzyko |
| 30 mm |
356 Gs
35.6 mT
|
0.03 kg / 0.06 lbs
27.2 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 25x8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.43 kg / 3.16 lbs
1432.0 g / 14.0 N
|
| 1 mm | Stal (~0.2) |
1.21 kg / 2.67 lbs
1210.0 g / 11.9 N
|
| 2 mm | Stal (~0.2) |
1.01 kg / 2.22 lbs
1008.0 g / 9.9 N
|
| 3 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
830.0 g / 8.1 N
|
| 5 mm | Stal (~0.2) |
0.55 kg / 1.21 lbs
548.0 g / 5.4 N
|
| 10 mm | Stal (~0.2) |
0.18 kg / 0.41 lbs
184.0 g / 1.8 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 25x8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.15 kg / 4.74 lbs
2148.0 g / 21.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.43 kg / 3.16 lbs
1432.0 g / 14.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 1.58 lbs
716.0 g / 7.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.58 kg / 7.89 lbs
3580.0 g / 35.1 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 25x8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 1.58 lbs
716.0 g / 7.0 N
|
| 1 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 2 mm |
|
3.58 kg / 7.89 lbs
3580.0 g / 35.1 N
|
| 3 mm |
|
5.37 kg / 11.84 lbs
5370.0 g / 52.7 N
|
| 5 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
| 10 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
| 11 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
| 12 mm |
|
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MP 25x8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.16 kg / 15.79 lbs
7160.0 g / 70.2 N
|
OK |
| 40 °C | -2.2% |
7.00 kg / 15.44 lbs
7002.5 g / 68.7 N
|
OK |
| 60 °C | -4.4% |
6.84 kg / 15.09 lbs
6845.0 g / 67.1 N
|
OK |
| 80 °C | -6.6% |
6.69 kg / 14.74 lbs
6687.4 g / 65.6 N
|
|
| 100 °C | -28.8% |
5.10 kg / 11.24 lbs
5097.9 g / 50.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 25x8x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
82.42 kg / 181.72 lbs
6 082 Gs
|
12.36 kg / 27.26 lbs
12364 g / 121.3 N
|
N/A |
| 1 mm |
75.95 kg / 167.44 lbs
11 091 Gs
|
11.39 kg / 25.12 lbs
11392 g / 111.8 N
|
68.35 kg / 150.69 lbs
~0 Gs
|
| 2 mm |
69.63 kg / 153.51 lbs
10 620 Gs
|
10.44 kg / 23.03 lbs
10445 g / 102.5 N
|
62.67 kg / 138.16 lbs
~0 Gs
|
| 3 mm |
63.64 kg / 140.29 lbs
10 153 Gs
|
9.55 kg / 21.04 lbs
9545 g / 93.6 N
|
57.27 kg / 126.26 lbs
~0 Gs
|
| 5 mm |
52.69 kg / 116.16 lbs
9 238 Gs
|
7.90 kg / 17.42 lbs
7903 g / 77.5 N
|
47.42 kg / 104.54 lbs
~0 Gs
|
| 10 mm |
31.58 kg / 69.62 lbs
7 152 Gs
|
4.74 kg / 10.44 lbs
4737 g / 46.5 N
|
28.42 kg / 62.66 lbs
~0 Gs
|
| 20 mm |
10.61 kg / 23.39 lbs
4 145 Gs
|
1.59 kg / 3.51 lbs
1591 g / 15.6 N
|
9.55 kg / 21.05 lbs
~0 Gs
|
| 50 mm |
0.65 kg / 1.43 lbs
1 024 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.69 lbs
712 Gs
|
0.05 kg / 0.10 lbs
47 g / 0.5 N
|
0.28 kg / 0.62 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 25x8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 25x8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.62 km/h
(6.28 m/s)
|
0.33 J | |
| 30 mm |
36.45 km/h
(10.13 m/s)
|
0.85 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.41 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
2.81 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 25x8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 536 Mx | 245.4 µWb |
| Współczynnik Pc | 1.03 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.16 kg | Standard |
| Woda (dno rzeki) |
8.20 kg
(+1.04 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.03
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną wolną od rys
- przy bezpośrednim styku (brak farby)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Odstęp (między magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – za chuda stal powoduje nasycenie magnetyczne, przez co część strumienia ucieka w powietrzu.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Zakaz zabawy
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Zakaz obróbki
Proszek powstający podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Ostrzeżenie dla alergików
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Przegrzanie magnesu
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
