MP 25x7.5/4.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030194
GTIN/EAN: 5906301812111
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
7.5/4.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
17.81 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.72 kg / 75.69 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
8.00 ZŁ z VAT / szt. + cena za transport
6.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub napisz za pomocą
formularz zapytania
na stronie kontakt.
Moc oraz wygląd magnesów neodymowych testujesz u nas w
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu MP 25x7.5/4.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x7.5/4.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030194 |
| GTIN/EAN | 5906301812111 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7.5/4.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 17.81 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.72 kg / 75.69 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Przedstawione wartości stanowią rezultat symulacji fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MP 25x7.5/4.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
7.72 kg / 7720.0 g
75.7 N
|
uwaga |
| 1 mm |
1906 Gs
190.6 mT
|
7.05 kg / 7049.4 g
69.2 N
|
uwaga |
| 2 mm |
1793 Gs
179.3 mT
|
6.24 kg / 6236.8 g
61.2 N
|
uwaga |
| 3 mm |
1664 Gs
166.4 mT
|
5.37 kg / 5368.9 g
52.7 N
|
uwaga |
| 5 mm |
1385 Gs
138.5 mT
|
3.72 kg / 3722.8 g
36.5 N
|
uwaga |
| 10 mm |
788 Gs
78.8 mT
|
1.20 kg / 1203.8 g
11.8 N
|
słaby uchwyt |
| 15 mm |
437 Gs
43.7 mT
|
0.37 kg / 370.3 g
3.6 N
|
słaby uchwyt |
| 20 mm |
253 Gs
25.3 mT
|
0.12 kg / 124.5 g
1.2 N
|
słaby uchwyt |
| 30 mm |
101 Gs
10.1 mT
|
0.02 kg / 19.8 g
0.2 N
|
słaby uchwyt |
| 50 mm |
27 Gs
2.7 mT
|
0.00 kg / 1.4 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 25x7.5/4.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 1544.0 g
15.1 N
|
| 1 mm | Stal (~0.2) |
1.41 kg / 1410.0 g
13.8 N
|
| 2 mm | Stal (~0.2) |
1.25 kg / 1248.0 g
12.2 N
|
| 3 mm | Stal (~0.2) |
1.07 kg / 1074.0 g
10.5 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 744.0 g
7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 240.0 g
2.4 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 25x7.5/4.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.32 kg / 2316.0 g
22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 1544.0 g
15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 772.0 g
7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.86 kg / 3860.0 g
37.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 25x7.5/4.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 772.0 g
7.6 N
|
| 1 mm |
|
1.93 kg / 1930.0 g
18.9 N
|
| 2 mm |
|
3.86 kg / 3860.0 g
37.9 N
|
| 5 mm |
|
7.72 kg / 7720.0 g
75.7 N
|
| 10 mm |
|
7.72 kg / 7720.0 g
75.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MP 25x7.5/4.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.72 kg / 7720.0 g
75.7 N
|
OK |
| 40 °C | -2.2% |
7.55 kg / 7550.2 g
74.1 N
|
OK |
| 60 °C | -4.4% |
7.38 kg / 7380.3 g
72.4 N
|
|
| 80 °C | -6.6% |
7.21 kg / 7210.5 g
70.7 N
|
|
| 100 °C | -28.8% |
5.50 kg / 5496.6 g
53.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 25x7.5/4.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.91 kg / 9907 g
97.2 N
3 484 Gs
|
N/A |
| 1 mm |
9.51 kg / 9509 g
93.3 N
3 909 Gs
|
8.56 kg / 8558 g
84.0 N
~0 Gs
|
| 2 mm |
9.05 kg / 9046 g
88.7 N
3 813 Gs
|
8.14 kg / 8141 g
79.9 N
~0 Gs
|
| 3 mm |
8.54 kg / 8540 g
83.8 N
3 705 Gs
|
7.69 kg / 7686 g
75.4 N
~0 Gs
|
| 5 mm |
7.45 kg / 7449 g
73.1 N
3 460 Gs
|
6.70 kg / 6704 g
65.8 N
~0 Gs
|
| 10 mm |
4.78 kg / 4777 g
46.9 N
2 771 Gs
|
4.30 kg / 4299 g
42.2 N
~0 Gs
|
| 20 mm |
1.54 kg / 1545 g
15.2 N
1 576 Gs
|
1.39 kg / 1390 g
13.6 N
~0 Gs
|
| 50 mm |
0.06 kg / 60 g
0.6 N
312 Gs
|
0.05 kg / 54 g
0.5 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 25x7.5/4.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MP 25x7.5/4.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
0.36 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.91 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.52 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.03 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x7.5/4.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 25x7.5/4.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 759 Mx | 97.6 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x7.5/4.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.72 kg | Standard |
| Woda (dno rzeki) |
8.84 kg
(+1.12 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Dystans – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano używając gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet niewielka szczelina między magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Unikaj kontaktu w przypadku alergii
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować zaczerwienienie skóry. Sugerujemy noszenie rękawiczek ochronnych.
Interferencja magnetyczna
Uwaga: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Łatwopalność
Proszek generowany podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Maksymalna temperatura
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Ryzyko pęknięcia
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Wpływ na zdrowie
Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
To nie jest zabawka
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
