MP 25x7.5/4.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030194
GTIN/EAN: 5906301812111
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
7.5/4.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
17.81 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.72 kg / 75.69 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
8.00 ZŁ z VAT / szt. + cena za transport
6.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz zapytania
na stronie kontakt.
Parametry oraz budowę magnesu sprawdzisz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MP 25x7.5/4.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x7.5/4.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030194 |
| GTIN/EAN | 5906301812111 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7.5/4.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 17.81 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.72 kg / 75.69 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią wynik kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MP 25x7.5/4.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
średnie ryzyko |
| 1 mm |
1906 Gs
190.6 mT
|
7.05 kg / 15.54 lbs
7049.4 g / 69.2 N
|
średnie ryzyko |
| 2 mm |
1793 Gs
179.3 mT
|
6.24 kg / 13.75 lbs
6236.8 g / 61.2 N
|
średnie ryzyko |
| 3 mm |
1664 Gs
166.4 mT
|
5.37 kg / 11.84 lbs
5368.9 g / 52.7 N
|
średnie ryzyko |
| 5 mm |
1385 Gs
138.5 mT
|
3.72 kg / 8.21 lbs
3722.8 g / 36.5 N
|
średnie ryzyko |
| 10 mm |
788 Gs
78.8 mT
|
1.20 kg / 2.65 lbs
1203.8 g / 11.8 N
|
niskie ryzyko |
| 15 mm |
437 Gs
43.7 mT
|
0.37 kg / 0.82 lbs
370.3 g / 3.6 N
|
niskie ryzyko |
| 20 mm |
253 Gs
25.3 mT
|
0.12 kg / 0.27 lbs
124.5 g / 1.2 N
|
niskie ryzyko |
| 30 mm |
101 Gs
10.1 mT
|
0.02 kg / 0.04 lbs
19.8 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MP 25x7.5/4.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| 1 mm | Stal (~0.2) |
1.41 kg / 3.11 lbs
1410.0 g / 13.8 N
|
| 2 mm | Stal (~0.2) |
1.25 kg / 2.75 lbs
1248.0 g / 12.2 N
|
| 3 mm | Stal (~0.2) |
1.07 kg / 2.37 lbs
1074.0 g / 10.5 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 1.64 lbs
744.0 g / 7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 25x7.5/4.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.32 kg / 5.11 lbs
2316.0 g / 22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 25x7.5/4.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| 1 mm |
|
1.93 kg / 4.25 lbs
1930.0 g / 18.9 N
|
| 2 mm |
|
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
| 3 mm |
|
5.79 kg / 12.76 lbs
5790.0 g / 56.8 N
|
| 5 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 10 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 11 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 12 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MP 25x7.5/4.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
OK |
| 40 °C | -2.2% |
7.55 kg / 16.65 lbs
7550.2 g / 74.1 N
|
OK |
| 60 °C | -4.4% |
7.38 kg / 16.27 lbs
7380.3 g / 72.4 N
|
|
| 80 °C | -6.6% |
7.21 kg / 15.90 lbs
7210.5 g / 70.7 N
|
|
| 100 °C | -28.8% |
5.50 kg / 12.12 lbs
5496.6 g / 53.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 25x7.5/4.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.91 kg / 21.84 lbs
3 484 Gs
|
1.49 kg / 3.28 lbs
1486 g / 14.6 N
|
N/A |
| 1 mm |
9.51 kg / 20.96 lbs
3 909 Gs
|
1.43 kg / 3.14 lbs
1426 g / 14.0 N
|
8.56 kg / 18.87 lbs
~0 Gs
|
| 2 mm |
9.05 kg / 19.94 lbs
3 813 Gs
|
1.36 kg / 2.99 lbs
1357 g / 13.3 N
|
8.14 kg / 17.95 lbs
~0 Gs
|
| 3 mm |
8.54 kg / 18.83 lbs
3 705 Gs
|
1.28 kg / 2.82 lbs
1281 g / 12.6 N
|
7.69 kg / 16.94 lbs
~0 Gs
|
| 5 mm |
7.45 kg / 16.42 lbs
3 460 Gs
|
1.12 kg / 2.46 lbs
1117 g / 11.0 N
|
6.70 kg / 14.78 lbs
~0 Gs
|
| 10 mm |
4.78 kg / 10.53 lbs
2 771 Gs
|
0.72 kg / 1.58 lbs
717 g / 7.0 N
|
4.30 kg / 9.48 lbs
~0 Gs
|
| 20 mm |
1.54 kg / 3.41 lbs
1 576 Gs
|
0.23 kg / 0.51 lbs
232 g / 2.3 N
|
1.39 kg / 3.06 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
312 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
202 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
138 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
97 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 25x7.5/4.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MP 25x7.5/4.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
0.36 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.91 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.52 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.03 J |
Tabela 9: Odporność na korozję
MP 25x7.5/4.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 25x7.5/4.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 759 Mx | 97.6 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 25x7.5/4.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.72 kg | Standard |
| Woda (dno rzeki) |
8.84 kg
(+1.12 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- o szlifowanej powierzchni styku
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans (między magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Masywność podłoża – zbyt cienka stal nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Niklowa powłoka a alergia
Niektóre osoby posiada nadwrażliwość na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może powodować silną reakcję alergiczną. Wskazane jest używanie rękawic bezlateksowych.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Nie lekceważ mocy
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Tylko dla dorosłych
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
