MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030333
GTIN/EAN: 5906301812272
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.65 kg / 65.21 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
7.75 ZŁ z VAT / szt. + cena za transport
6.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz
przez naszą stronę.
Udźwig i wygląd magnesów neodymowych obliczysz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030333 |
| GTIN/EAN | 5906301812272 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.65 kg / 65.21 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Poniższe wartości stanowią wynik kalkulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MP 20x8/4x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2424 Gs
242.4 mT
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
mocny |
| 1 mm |
2265 Gs
226.5 mT
|
5.81 kg / 12.80 lbs
5807.9 g / 57.0 N
|
mocny |
| 2 mm |
2070 Gs
207.0 mT
|
4.85 kg / 10.69 lbs
4851.0 g / 47.6 N
|
mocny |
| 3 mm |
1858 Gs
185.8 mT
|
3.91 kg / 8.61 lbs
3906.5 g / 38.3 N
|
mocny |
| 5 mm |
1437 Gs
143.7 mT
|
2.34 kg / 5.16 lbs
2338.7 g / 22.9 N
|
mocny |
| 10 mm |
691 Gs
69.1 mT
|
0.54 kg / 1.19 lbs
540.5 g / 5.3 N
|
bezpieczny |
| 15 mm |
343 Gs
34.3 mT
|
0.13 kg / 0.29 lbs
133.3 g / 1.3 N
|
bezpieczny |
| 20 mm |
186 Gs
18.6 mT
|
0.04 kg / 0.09 lbs
39.3 g / 0.4 N
|
bezpieczny |
| 30 mm |
70 Gs
7.0 mT
|
0.01 kg / 0.01 lbs
5.5 g / 0.1 N
|
bezpieczny |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MP 20x8/4x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.33 kg / 2.93 lbs
1330.0 g / 13.0 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 2.56 lbs
1162.0 g / 11.4 N
|
| 2 mm | Stal (~0.2) |
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
| 3 mm | Stal (~0.2) |
0.78 kg / 1.72 lbs
782.0 g / 7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
468.0 g / 4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 20x8/4x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.00 kg / 4.40 lbs
1995.0 g / 19.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.33 kg / 2.93 lbs
1330.0 g / 13.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 1.47 lbs
665.0 g / 6.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.33 kg / 7.33 lbs
3325.0 g / 32.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 20x8/4x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 1.47 lbs
665.0 g / 6.5 N
|
| 1 mm |
|
1.66 kg / 3.67 lbs
1662.5 g / 16.3 N
|
| 2 mm |
|
3.33 kg / 7.33 lbs
3325.0 g / 32.6 N
|
| 3 mm |
|
4.99 kg / 11.00 lbs
4987.5 g / 48.9 N
|
| 5 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
| 10 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
| 11 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
| 12 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MP 20x8/4x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
OK |
| 40 °C | -2.2% |
6.50 kg / 14.34 lbs
6503.7 g / 63.8 N
|
OK |
| 60 °C | -4.4% |
6.36 kg / 14.02 lbs
6357.4 g / 62.4 N
|
|
| 80 °C | -6.6% |
6.21 kg / 13.69 lbs
6211.1 g / 60.9 N
|
|
| 100 °C | -28.8% |
4.73 kg / 10.44 lbs
4734.8 g / 46.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MP 20x8/4x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.28 kg / 20.47 lbs
4 012 Gs
|
1.39 kg / 3.07 lbs
1393 g / 13.7 N
|
N/A |
| 1 mm |
8.73 kg / 19.25 lbs
4 701 Gs
|
1.31 kg / 2.89 lbs
1310 g / 12.8 N
|
7.86 kg / 17.33 lbs
~0 Gs
|
| 2 mm |
8.11 kg / 17.88 lbs
4 530 Gs
|
1.22 kg / 2.68 lbs
1216 g / 11.9 N
|
7.30 kg / 16.09 lbs
~0 Gs
|
| 3 mm |
7.45 kg / 16.42 lbs
4 342 Gs
|
1.12 kg / 2.46 lbs
1117 g / 11.0 N
|
6.70 kg / 14.78 lbs
~0 Gs
|
| 5 mm |
6.10 kg / 13.45 lbs
3 930 Gs
|
0.92 kg / 2.02 lbs
915 g / 9.0 N
|
5.49 kg / 12.11 lbs
~0 Gs
|
| 10 mm |
3.27 kg / 7.20 lbs
2 875 Gs
|
0.49 kg / 1.08 lbs
490 g / 4.8 N
|
2.94 kg / 6.48 lbs
~0 Gs
|
| 20 mm |
0.75 kg / 1.66 lbs
1 382 Gs
|
0.11 kg / 0.25 lbs
113 g / 1.1 N
|
0.68 kg / 1.50 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
220 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
139 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
93 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
65 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 20x8/4x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MP 20x8/4x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.67 km/h
(7.13 m/s)
|
0.29 J | |
| 30 mm |
42.38 km/h
(11.77 m/s)
|
0.78 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.30 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.61 J |
Tabela 9: Odporność na korozję
MP 20x8/4x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 20x8/4x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 218 Mx | 72.2 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 20x8/4x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.65 kg | Standard |
| Woda (dno rzeki) |
7.61 kg
(+0.96 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa tylko ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- z wykorzystaniem podłoża ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- której wymiar poprzeczny wynosi ok. 10 mm
- o wypolerowanej powierzchni styku
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Masywność podłoża – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia jest tracona w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą obniża siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Ogromna siła
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Produkt nie dla dzieci
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Uszkodzenia czujników
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Niklowa powłoka a alergia
Pewna grupa użytkowników ma alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Wskazane jest stosowanie rękawic bezlateksowych.
Niszczenie danych
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Zakaz obróbki
Proszek powstający podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
