MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030333
GTIN/EAN: 5906301812272
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.65 kg / 65.21 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
7.75 ZŁ z VAT / szt. + cena za transport
6.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie skontaktuj się poprzez
formularz
na stronie kontaktowej.
Właściwości a także wygląd elementów magnetycznych zweryfikujesz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030333 |
| GTIN/EAN | 5906301812272 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.65 kg / 65.21 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione informacje są wynik symulacji inżynierskiej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MP 20x8/4x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2424 Gs
242.4 mT
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
mocny |
| 1 mm |
2265 Gs
226.5 mT
|
5.81 kg / 12.80 lbs
5807.9 g / 57.0 N
|
mocny |
| 2 mm |
2070 Gs
207.0 mT
|
4.85 kg / 10.69 lbs
4851.0 g / 47.6 N
|
mocny |
| 3 mm |
1858 Gs
185.8 mT
|
3.91 kg / 8.61 lbs
3906.5 g / 38.3 N
|
mocny |
| 5 mm |
1437 Gs
143.7 mT
|
2.34 kg / 5.16 lbs
2338.7 g / 22.9 N
|
mocny |
| 10 mm |
691 Gs
69.1 mT
|
0.54 kg / 1.19 lbs
540.5 g / 5.3 N
|
niskie ryzyko |
| 15 mm |
343 Gs
34.3 mT
|
0.13 kg / 0.29 lbs
133.3 g / 1.3 N
|
niskie ryzyko |
| 20 mm |
186 Gs
18.6 mT
|
0.04 kg / 0.09 lbs
39.3 g / 0.4 N
|
niskie ryzyko |
| 30 mm |
70 Gs
7.0 mT
|
0.01 kg / 0.01 lbs
5.5 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MP 20x8/4x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.33 kg / 2.93 lbs
1330.0 g / 13.0 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 2.56 lbs
1162.0 g / 11.4 N
|
| 2 mm | Stal (~0.2) |
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
| 3 mm | Stal (~0.2) |
0.78 kg / 1.72 lbs
782.0 g / 7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
468.0 g / 4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 20x8/4x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.00 kg / 4.40 lbs
1995.0 g / 19.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.33 kg / 2.93 lbs
1330.0 g / 13.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 1.47 lbs
665.0 g / 6.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.33 kg / 7.33 lbs
3325.0 g / 32.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 20x8/4x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 1.47 lbs
665.0 g / 6.5 N
|
| 1 mm |
|
1.66 kg / 3.67 lbs
1662.5 g / 16.3 N
|
| 2 mm |
|
3.33 kg / 7.33 lbs
3325.0 g / 32.6 N
|
| 3 mm |
|
4.99 kg / 11.00 lbs
4987.5 g / 48.9 N
|
| 5 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
| 10 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
| 11 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
| 12 mm |
|
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MP 20x8/4x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.65 kg / 14.66 lbs
6650.0 g / 65.2 N
|
OK |
| 40 °C | -2.2% |
6.50 kg / 14.34 lbs
6503.7 g / 63.8 N
|
OK |
| 60 °C | -4.4% |
6.36 kg / 14.02 lbs
6357.4 g / 62.4 N
|
|
| 80 °C | -6.6% |
6.21 kg / 13.69 lbs
6211.1 g / 60.9 N
|
|
| 100 °C | -28.8% |
4.73 kg / 10.44 lbs
4734.8 g / 46.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MP 20x8/4x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.28 kg / 20.47 lbs
4 012 Gs
|
1.39 kg / 3.07 lbs
1393 g / 13.7 N
|
N/A |
| 1 mm |
8.73 kg / 19.25 lbs
4 701 Gs
|
1.31 kg / 2.89 lbs
1310 g / 12.8 N
|
7.86 kg / 17.33 lbs
~0 Gs
|
| 2 mm |
8.11 kg / 17.88 lbs
4 530 Gs
|
1.22 kg / 2.68 lbs
1216 g / 11.9 N
|
7.30 kg / 16.09 lbs
~0 Gs
|
| 3 mm |
7.45 kg / 16.42 lbs
4 342 Gs
|
1.12 kg / 2.46 lbs
1117 g / 11.0 N
|
6.70 kg / 14.78 lbs
~0 Gs
|
| 5 mm |
6.10 kg / 13.45 lbs
3 930 Gs
|
0.92 kg / 2.02 lbs
915 g / 9.0 N
|
5.49 kg / 12.11 lbs
~0 Gs
|
| 10 mm |
3.27 kg / 7.20 lbs
2 875 Gs
|
0.49 kg / 1.08 lbs
490 g / 4.8 N
|
2.94 kg / 6.48 lbs
~0 Gs
|
| 20 mm |
0.75 kg / 1.66 lbs
1 382 Gs
|
0.11 kg / 0.25 lbs
113 g / 1.1 N
|
0.68 kg / 1.50 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
220 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
139 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
93 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
65 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 20x8/4x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MP 20x8/4x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.67 km/h
(7.13 m/s)
|
0.29 J | |
| 30 mm |
42.38 km/h
(11.77 m/s)
|
0.78 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.30 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.61 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 20x8/4x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 20x8/4x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 218 Mx | 72.2 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MP 20x8/4x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.65 kg | Standard |
| Woda (dno rzeki) |
7.61 kg
(+0.96 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (NiCuNi, złoto, srebro) zyskują nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której grubość wynosi ok. 10 mm
- o wypolerowanej powierzchni kontaktu
- w warunkach braku dystansu (metal do metalu)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (pomiędzy magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – za chuda stal nie zamyka strumienia, przez co część strumienia ucieka w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Nie dawać dzieciom
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Potężne pole
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Ochrona oczu
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Ryzyko pożaru
Proszek generowany podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zagrożenie dla elektroniki
Nie przykładaj magnesów do portfela, laptopa czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Ryzyko uczulenia
Część populacji posiada uczulenie na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może skutkować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
