UMS 60x18x8.5x15 / N38 - uchwyt magnetyczny stożkowy
uchwyt magnetyczny stożkowy
Numer katalogowy 220404
GTIN/EAN: 5906301814238
Średnica Ø
60 mm [±1 mm]
Wymiar stożka Ø
18x8.5 mm [±1 mm]
Wysokość
15 mm [±1 mm]
Waga
250 g
Kierunek magnesowania
↑ osiowy
Udźwig
112.00 kg / 1098.34 N
Powłoka
[NiCuNi] nikiel
62.78 ZŁ z VAT / szt. + cena za transport
51.04 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie napisz przez
nasz formularz online
w sekcji kontakt.
Parametry a także budowę magnesu neodymowego przetestujesz w naszym
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne UMS 60x18x8.5x15 / N38 - uchwyt magnetyczny stożkowy
Specyfikacja / charakterystyka - UMS 60x18x8.5x15 / N38 - uchwyt magnetyczny stożkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 220404 |
| GTIN/EAN | 5906301814238 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 60 mm [±1 mm] |
| Wymiar stożka Ø | 18x8.5 mm [±1 mm] |
| Wysokość | 15 mm [±1 mm] |
| Waga | 250 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 112.00 kg / 1098.34 N |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Alergia na nikiel
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Ogromna siła
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często szybciej niż zdążysz zareagować.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Samozapłon
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Kruchość materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Trwała utrata siły
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Ostrzeżenie dla sercowców
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Pole magnetyczne a elektronika
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
