MP 12x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030395
GTIN/EAN: 5906301812326
Średnica
12 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.26 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.21 kg / 21.72 N
Indukcja magnetyczna
277.09 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
1.427 ZŁ z VAT / szt. + cena za transport
1.160 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo napisz przez
nasz formularz online
w sekcji kontakt.
Udźwig oraz budowę magnesów testujesz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MP 12x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 12x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030395 |
| GTIN/EAN | 5906301812326 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 12 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.26 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.21 kg / 21.72 N |
| Indukcja magnetyczna ~ ? | 277.09 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Poniższe dane stanowią wynik analizy fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 12x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2423 Gs
242.3 mT
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
średnie ryzyko |
| 1 mm |
2138 Gs
213.8 mT
|
1.72 kg / 3.79 lbs
1720.7 g / 16.9 N
|
niskie ryzyko |
| 2 mm |
1786 Gs
178.6 mT
|
1.20 kg / 2.65 lbs
1200.5 g / 11.8 N
|
niskie ryzyko |
| 3 mm |
1437 Gs
143.7 mT
|
0.78 kg / 1.71 lbs
777.8 g / 7.6 N
|
niskie ryzyko |
| 5 mm |
885 Gs
88.5 mT
|
0.29 kg / 0.65 lbs
294.7 g / 2.9 N
|
niskie ryzyko |
| 10 mm |
277 Gs
27.7 mT
|
0.03 kg / 0.06 lbs
28.9 g / 0.3 N
|
niskie ryzyko |
| 15 mm |
110 Gs
11.0 mT
|
0.00 kg / 0.01 lbs
4.6 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
53 Gs
5.3 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MP 12x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 0.34 lbs
156.0 g / 1.5 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 12x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.66 kg / 1.46 lbs
663.0 g / 6.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.49 lbs
221.0 g / 2.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.11 kg / 2.44 lbs
1105.0 g / 10.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 12x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.49 lbs
221.0 g / 2.2 N
|
| 1 mm |
|
0.55 kg / 1.22 lbs
552.5 g / 5.4 N
|
| 2 mm |
|
1.11 kg / 2.44 lbs
1105.0 g / 10.8 N
|
| 3 mm |
|
1.66 kg / 3.65 lbs
1657.5 g / 16.3 N
|
| 5 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 10 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 11 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 12 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MP 12x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
OK |
| 40 °C | -2.2% |
2.16 kg / 4.77 lbs
2161.4 g / 21.2 N
|
OK |
| 60 °C | -4.4% |
2.11 kg / 4.66 lbs
2112.8 g / 20.7 N
|
|
| 80 °C | -6.6% |
2.06 kg / 4.55 lbs
2064.1 g / 20.2 N
|
|
| 100 °C | -28.8% |
1.57 kg / 3.47 lbs
1573.5 g / 15.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MP 12x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg) (N-N) |
|---|---|---|---|
| 0 mm |
3.09 kg / 6.82 lbs
4 010 Gs
|
0.46 kg / 1.02 lbs
464 g / 4.6 N
|
N/A |
| 1 mm |
2.77 kg / 6.12 lbs
4 589 Gs
|
0.42 kg / 0.92 lbs
416 g / 4.1 N
|
2.50 kg / 5.50 lbs
~0 Gs
|
| 2 mm |
2.41 kg / 5.31 lbs
4 276 Gs
|
0.36 kg / 0.80 lbs
361 g / 3.5 N
|
2.17 kg / 4.78 lbs
~0 Gs
|
| 3 mm |
2.03 kg / 4.48 lbs
3 930 Gs
|
0.31 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.04 lbs
~0 Gs
|
| 5 mm |
1.36 kg / 3.00 lbs
3 216 Gs
|
0.20 kg / 0.45 lbs
204 g / 2.0 N
|
1.23 kg / 2.70 lbs
~0 Gs
|
| 10 mm |
0.41 kg / 0.91 lbs
1 770 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.09 lbs
554 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 12x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 12x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.79 km/h
(8.83 m/s)
|
0.09 J | |
| 30 mm |
54.63 km/h
(15.17 m/s)
|
0.26 J | |
| 50 mm |
70.52 km/h
(19.59 m/s)
|
0.43 J | |
| 100 mm |
99.73 km/h
(27.70 m/s)
|
0.87 J |
Tabela 9: Parametry powłoki (trwałość)
MP 12x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 12x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 466 Mx | 24.7 µWb |
| Współczynnik Pc | 0.32 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 12x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.21 kg | Standard |
| Woda (dno rzeki) |
2.53 kg
(+0.32 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.32
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Materiał blachy – stal miękka przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
BHP przy magnesach
Obróbka mechaniczna
Pył powstający podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Nadwrażliwość na metale
Niektóre osoby posiada uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może skutkować wysypkę. Zalecamy używanie rękawiczek ochronnych.
To nie jest zabawka
Magnesy neodymowe to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Potężne pole
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Ryzyko złamań
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Uwaga medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Rozprysk materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
