MW 15x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010031
GTIN/EAN: 5906301810308
Średnica Ø
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
6.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.39 kg / 52.83 N
Indukcja magnetyczna
343.70 mT / 3437 Gs
Powłoka
[NiCuNi] nikiel
3.20 ZŁ z VAT / szt. + cena za transport
2.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie napisz korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Moc a także wygląd magnesów neodymowych wyliczysz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 15x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010031 |
| GTIN/EAN | 5906301810308 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 6.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.39 kg / 52.83 N |
| Indukcja magnetyczna ~ ? | 343.70 mT / 3437 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Przedstawione wartości stanowią wynik symulacji fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 15x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3436 Gs
343.6 mT
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
mocny |
| 1 mm |
3054 Gs
305.4 mT
|
4.26 kg / 9.39 lbs
4258.2 g / 41.8 N
|
mocny |
| 2 mm |
2633 Gs
263.3 mT
|
3.17 kg / 6.98 lbs
3165.4 g / 31.1 N
|
mocny |
| 3 mm |
2221 Gs
222.1 mT
|
2.25 kg / 4.96 lbs
2251.5 g / 22.1 N
|
mocny |
| 5 mm |
1521 Gs
152.1 mT
|
1.06 kg / 2.33 lbs
1056.2 g / 10.4 N
|
bezpieczny |
| 10 mm |
585 Gs
58.5 mT
|
0.16 kg / 0.35 lbs
156.5 g / 1.5 N
|
bezpieczny |
| 15 mm |
260 Gs
26.0 mT
|
0.03 kg / 0.07 lbs
30.8 g / 0.3 N
|
bezpieczny |
| 20 mm |
133 Gs
13.3 mT
|
0.01 kg / 0.02 lbs
8.1 g / 0.1 N
|
bezpieczny |
| 30 mm |
47 Gs
4.7 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 15x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.08 kg / 2.38 lbs
1078.0 g / 10.6 N
|
| 1 mm | Stal (~0.2) |
0.85 kg / 1.88 lbs
852.0 g / 8.4 N
|
| 2 mm | Stal (~0.2) |
0.63 kg / 1.40 lbs
634.0 g / 6.2 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
212.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 15x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.62 kg / 3.56 lbs
1617.0 g / 15.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.08 kg / 2.38 lbs
1078.0 g / 10.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.54 kg / 1.19 lbs
539.0 g / 5.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.70 kg / 5.94 lbs
2695.0 g / 26.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 15x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 1.19 lbs
539.0 g / 5.3 N
|
| 1 mm |
|
1.35 kg / 2.97 lbs
1347.5 g / 13.2 N
|
| 2 mm |
|
2.70 kg / 5.94 lbs
2695.0 g / 26.4 N
|
| 3 mm |
|
4.04 kg / 8.91 lbs
4042.5 g / 39.7 N
|
| 5 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 10 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 11 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 12 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 15x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
OK |
| 40 °C | -2.2% |
5.27 kg / 11.62 lbs
5271.4 g / 51.7 N
|
OK |
| 60 °C | -4.4% |
5.15 kg / 11.36 lbs
5152.8 g / 50.5 N
|
|
| 80 °C | -6.6% |
5.03 kg / 11.10 lbs
5034.3 g / 49.4 N
|
|
| 100 °C | -28.8% |
3.84 kg / 8.46 lbs
3837.7 g / 37.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 15x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.86 kg / 28.35 lbs
4 954 Gs
|
1.93 kg / 4.25 lbs
1929 g / 18.9 N
|
N/A |
| 1 mm |
11.54 kg / 25.43 lbs
6 508 Gs
|
1.73 kg / 3.81 lbs
1730 g / 17.0 N
|
10.38 kg / 22.89 lbs
~0 Gs
|
| 2 mm |
10.16 kg / 22.40 lbs
6 107 Gs
|
1.52 kg / 3.36 lbs
1524 g / 14.9 N
|
9.14 kg / 20.16 lbs
~0 Gs
|
| 3 mm |
8.82 kg / 19.44 lbs
5 689 Gs
|
1.32 kg / 2.92 lbs
1322 g / 13.0 N
|
7.93 kg / 17.49 lbs
~0 Gs
|
| 5 mm |
6.40 kg / 14.11 lbs
4 847 Gs
|
0.96 kg / 2.12 lbs
960 g / 9.4 N
|
5.76 kg / 12.70 lbs
~0 Gs
|
| 10 mm |
2.52 kg / 5.56 lbs
3 042 Gs
|
0.38 kg / 0.83 lbs
378 g / 3.7 N
|
2.27 kg / 5.00 lbs
~0 Gs
|
| 20 mm |
0.37 kg / 0.82 lbs
1 171 Gs
|
0.06 kg / 0.12 lbs
56 g / 0.5 N
|
0.34 kg / 0.74 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
153 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
95 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 15x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 15x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.27 km/h
(8.13 m/s)
|
0.22 J | |
| 30 mm |
49.81 km/h
(13.84 m/s)
|
0.63 J | |
| 50 mm |
64.30 km/h
(17.86 m/s)
|
1.06 J | |
| 100 mm |
90.93 km/h
(25.26 m/s)
|
2.12 J |
Tabela 9: Odporność na korozję
MW 15x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 15x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 428 Mx | 64.3 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 15x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.39 kg | Standard |
| Woda (dno rzeki) |
6.17 kg
(+0.78 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- z zastosowaniem blachy ze miękkiej stali, działającej jako idealny przewodnik strumienia
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Dystans (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Ochrona dłoni
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Zagrożenie życia
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Ryzyko uczulenia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Pole magnetyczne a elektronika
Potężne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Zakaz obróbki
Proszek powstający podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Limity termiczne
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Świadome użytkowanie
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
