MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030179
GTIN/EAN: 5906301811961
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
1.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.79 kg / 17.55 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo napisz poprzez
nasz formularz online
przez naszą stronę.
Masę oraz wygląd magnesów sprawdzisz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030179 |
| GTIN/EAN | 5906301811961 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 1.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.79 kg / 17.55 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Poniższe informacje stanowią rezultat kalkulacji inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 10x6x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6115 Gs
611.5 mT
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
niskie ryzyko |
| 1 mm |
4915 Gs
491.5 mT
|
1.16 kg / 2.55 lbs
1156.7 g / 11.3 N
|
niskie ryzyko |
| 2 mm |
3833 Gs
383.3 mT
|
0.70 kg / 1.55 lbs
703.2 g / 6.9 N
|
niskie ryzyko |
| 3 mm |
2949 Gs
294.9 mT
|
0.42 kg / 0.92 lbs
416.3 g / 4.1 N
|
niskie ryzyko |
| 5 mm |
1761 Gs
176.1 mT
|
0.15 kg / 0.33 lbs
148.5 g / 1.5 N
|
niskie ryzyko |
| 10 mm |
612 Gs
61.2 mT
|
0.02 kg / 0.04 lbs
17.9 g / 0.2 N
|
niskie ryzyko |
| 15 mm |
284 Gs
28.4 mT
|
0.00 kg / 0.01 lbs
3.9 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
157 Gs
15.7 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 10x6x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.36 kg / 0.79 lbs
358.0 g / 3.5 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| 2 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 10x6x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.54 kg / 1.18 lbs
537.0 g / 5.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.36 kg / 0.79 lbs
358.0 g / 3.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.18 kg / 0.39 lbs
179.0 g / 1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.90 kg / 1.97 lbs
895.0 g / 8.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 10x6x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.18 kg / 0.39 lbs
179.0 g / 1.8 N
|
| 1 mm |
|
0.45 kg / 0.99 lbs
447.5 g / 4.4 N
|
| 2 mm |
|
0.90 kg / 1.97 lbs
895.0 g / 8.8 N
|
| 3 mm |
|
1.34 kg / 2.96 lbs
1342.5 g / 13.2 N
|
| 5 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 10 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 11 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 12 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MP 10x6x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
OK |
| 40 °C | -2.2% |
1.75 kg / 3.86 lbs
1750.6 g / 17.2 N
|
OK |
| 60 °C | -4.4% |
1.71 kg / 3.77 lbs
1711.2 g / 16.8 N
|
OK |
| 80 °C | -6.6% |
1.67 kg / 3.69 lbs
1671.9 g / 16.4 N
|
|
| 100 °C | -28.8% |
1.27 kg / 2.81 lbs
1274.5 g / 12.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 10x6x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.93 kg / 28.50 lbs
6 169 Gs
|
1.94 kg / 4.27 lbs
1939 g / 19.0 N
|
N/A |
| 1 mm |
10.50 kg / 23.16 lbs
11 025 Gs
|
1.58 kg / 3.47 lbs
1576 g / 15.5 N
|
9.45 kg / 20.84 lbs
~0 Gs
|
| 2 mm |
8.35 kg / 18.41 lbs
9 831 Gs
|
1.25 kg / 2.76 lbs
1253 g / 12.3 N
|
7.52 kg / 16.57 lbs
~0 Gs
|
| 3 mm |
6.55 kg / 14.43 lbs
8 703 Gs
|
0.98 kg / 2.17 lbs
982 g / 9.6 N
|
5.89 kg / 12.99 lbs
~0 Gs
|
| 5 mm |
3.91 kg / 8.63 lbs
6 729 Gs
|
0.59 kg / 1.29 lbs
587 g / 5.8 N
|
3.52 kg / 7.76 lbs
~0 Gs
|
| 10 mm |
1.07 kg / 2.36 lbs
3 522 Gs
|
0.16 kg / 0.35 lbs
161 g / 1.6 N
|
0.96 kg / 2.13 lbs
~0 Gs
|
| 20 mm |
0.13 kg / 0.29 lbs
1 223 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
194 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
129 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
91 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
50 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 10x6x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MP 10x6x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.94 km/h
(9.71 m/s)
|
0.07 J | |
| 30 mm |
60.15 km/h
(16.71 m/s)
|
0.21 J | |
| 50 mm |
77.64 km/h
(21.57 m/s)
|
0.35 J | |
| 100 mm |
109.80 km/h
(30.50 m/s)
|
0.70 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 10x6x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 10x6x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 017 Mx | 40.2 µWb |
| Współczynnik Pc | 1.44 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 10x6x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.79 kg | Standard |
| Woda (dno rzeki) |
2.05 kg
(+0.26 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi jedynie ~1% (wg testów).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalny udźwig magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której grubość to min. 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- przy osiowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – za chuda płyta nie przyjmuje całego pola, przez co część mocy jest tracona na drugą stronę.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Chronić przed dziećmi
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Przegrzanie magnesu
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ostrożność wymagana
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zatrzymać działanie implantu.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Smartfony i tablety
Silne pole magnetyczne destabilizuje działanie magnetometrów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
