MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030179
GTIN/EAN: 5906301811961
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
1.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.79 kg / 17.55 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń i zapytaj
+48 888 99 98 98
lub zostaw wiadomość poprzez
formularz zgłoszeniowy
na stronie kontakt.
Moc oraz wygląd elementów magnetycznych przetestujesz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030179 |
| GTIN/EAN | 5906301811961 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 1.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.79 kg / 17.55 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Niniejsze wartości są wynik analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MP 10x6x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6115 Gs
611.5 mT
|
1.79 kg / 1790.0 g
17.6 N
|
słaby uchwyt |
| 1 mm |
4915 Gs
491.5 mT
|
1.16 kg / 1156.7 g
11.3 N
|
słaby uchwyt |
| 2 mm |
3833 Gs
383.3 mT
|
0.70 kg / 703.2 g
6.9 N
|
słaby uchwyt |
| 3 mm |
2949 Gs
294.9 mT
|
0.42 kg / 416.3 g
4.1 N
|
słaby uchwyt |
| 5 mm |
1761 Gs
176.1 mT
|
0.15 kg / 148.5 g
1.5 N
|
słaby uchwyt |
| 10 mm |
612 Gs
61.2 mT
|
0.02 kg / 17.9 g
0.2 N
|
słaby uchwyt |
| 15 mm |
284 Gs
28.4 mT
|
0.00 kg / 3.9 g
0.0 N
|
słaby uchwyt |
| 20 mm |
157 Gs
15.7 mT
|
0.00 kg / 1.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MP 10x6x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.36 kg / 358.0 g
3.5 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 232.0 g
2.3 N
|
| 2 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 10x6x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.54 kg / 537.0 g
5.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.36 kg / 358.0 g
3.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.18 kg / 179.0 g
1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.90 kg / 895.0 g
8.8 N
|
MP 10x6x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.18 kg / 179.0 g
1.8 N
|
| 1 mm |
|
0.45 kg / 447.5 g
4.4 N
|
| 2 mm |
|
0.90 kg / 895.0 g
8.8 N
|
| 5 mm |
|
1.79 kg / 1790.0 g
17.6 N
|
| 10 mm |
|
1.79 kg / 1790.0 g
17.6 N
|
MP 10x6x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.79 kg / 1790.0 g
17.6 N
|
OK |
| 40 °C | -2.2% |
1.75 kg / 1750.6 g
17.2 N
|
OK |
| 60 °C | -4.4% |
1.71 kg / 1711.2 g
16.8 N
|
OK |
| 80 °C | -6.6% |
1.67 kg / 1671.9 g
16.4 N
|
|
| 100 °C | -28.8% |
1.27 kg / 1274.5 g
12.5 N
|
MP 10x6x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.93 kg / 12926 g
126.8 N
6 169 Gs
|
N/A |
| 1 mm |
10.50 kg / 10505 g
103.1 N
11 025 Gs
|
9.45 kg / 9454 g
92.7 N
~0 Gs
|
| 2 mm |
8.35 kg / 8353 g
81.9 N
9 831 Gs
|
7.52 kg / 7518 g
73.7 N
~0 Gs
|
| 3 mm |
6.55 kg / 6547 g
64.2 N
8 703 Gs
|
5.89 kg / 5892 g
57.8 N
~0 Gs
|
| 5 mm |
3.91 kg / 3913 g
38.4 N
6 729 Gs
|
3.52 kg / 3522 g
34.5 N
~0 Gs
|
| 10 mm |
1.07 kg / 1072 g
10.5 N
3 522 Gs
|
0.96 kg / 965 g
9.5 N
~0 Gs
|
| 20 mm |
0.13 kg / 129 g
1.3 N
1 223 Gs
|
0.12 kg / 116 g
1.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
194 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MP 10x6x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MP 10x6x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.94 km/h
(9.71 m/s)
|
0.07 J | |
| 30 mm |
60.15 km/h
(16.71 m/s)
|
0.21 J | |
| 50 mm |
77.64 km/h
(21.57 m/s)
|
0.35 J | |
| 100 mm |
109.80 km/h
(30.50 m/s)
|
0.70 J |
MP 10x6x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 10x6x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 017 Mx | 40.2 µWb |
| Współczynnik Pc | 1.44 | Wysoki (Stabilny) |
MP 10x6x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.79 kg | Standard |
| Woda (dno rzeki) |
2.05 kg
(+0.26 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią idealnie równą
- przy bezpośrednim styku (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Udźwig w warunkach rzeczywistych – czynniki
- Dystans – występowanie jakiejkolwiek warstwy (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Reakcje alergiczne
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może powodować silną reakcję alergiczną. Zalecamy stosowanie rękawic bezlateksowych.
Implanty medyczne
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Wpływ na smartfony
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Ryzyko złamań
Duże magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa przyciągające się elementy.
Ryzyko pożaru
Proszek powstający podczas cięcia magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
Ryzyko połknięcia
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od niepowołanych osób.
Wrażliwość na ciepło
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
