MW 5x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010086
GTIN/EAN: 5906301810858
Średnica Ø
5 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
3.68 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.45 kg / 4.41 N
Indukcja magnetyczna
615.39 mT / 6154 Gs
Powłoka
[NiCuNi] nikiel
2.31 ZŁ z VAT / szt. + cena za transport
1.880 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie pisz poprzez
formularz kontaktowy
w sekcji kontakt.
Siłę i wygląd elementów magnetycznych testujesz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja produktu - MW 5x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010086 |
| GTIN/EAN | 5906301810858 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 3.68 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.45 kg / 4.41 N |
| Indukcja magnetyczna ~ ? | 615.39 mT / 6154 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią bezpośredni efekt kalkulacji fizycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 5x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6144 Gs
614.4 mT
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
słaby uchwyt |
| 1 mm |
3869 Gs
386.9 mT
|
0.18 kg / 0.39 lbs
178.4 g / 1.8 N
|
słaby uchwyt |
| 2 mm |
2300 Gs
230.0 mT
|
0.06 kg / 0.14 lbs
63.1 g / 0.6 N
|
słaby uchwyt |
| 3 mm |
1412 Gs
141.2 mT
|
0.02 kg / 0.05 lbs
23.8 g / 0.2 N
|
słaby uchwyt |
| 5 mm |
633 Gs
63.3 mT
|
0.00 kg / 0.01 lbs
4.8 g / 0.0 N
|
słaby uchwyt |
| 10 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
72 Gs
7.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MW 5x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 5x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 0.30 lbs
135.0 g / 1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 0.50 lbs
225.0 g / 2.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 5x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
| 1 mm |
|
0.11 kg / 0.25 lbs
112.5 g / 1.1 N
|
| 2 mm |
|
0.23 kg / 0.50 lbs
225.0 g / 2.2 N
|
| 3 mm |
|
0.34 kg / 0.74 lbs
337.5 g / 3.3 N
|
| 5 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 10 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 11 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 12 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 5x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 0.97 lbs
440.1 g / 4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 0.95 lbs
430.2 g / 4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 0.93 lbs
420.3 g / 4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 0.71 lbs
320.4 g / 3.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 5x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.57 kg / 10.08 lbs
6 167 Gs
|
0.69 kg / 1.51 lbs
686 g / 6.7 N
|
N/A |
| 1 mm |
2.97 kg / 6.55 lbs
9 909 Gs
|
0.45 kg / 0.98 lbs
446 g / 4.4 N
|
2.67 kg / 5.90 lbs
~0 Gs
|
| 2 mm |
1.81 kg / 3.99 lbs
7 738 Gs
|
0.27 kg / 0.60 lbs
272 g / 2.7 N
|
1.63 kg / 3.60 lbs
~0 Gs
|
| 3 mm |
1.08 kg / 2.37 lbs
5 965 Gs
|
0.16 kg / 0.36 lbs
162 g / 1.6 N
|
0.97 kg / 2.14 lbs
~0 Gs
|
| 5 mm |
0.39 kg / 0.86 lbs
3 581 Gs
|
0.06 kg / 0.13 lbs
58 g / 0.6 N
|
0.35 kg / 0.77 lbs
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 lbs
1 266 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
339 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 5x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 5x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.16 km/h
(3.10 m/s)
|
0.02 J | |
| 30 mm |
19.32 km/h
(5.37 m/s)
|
0.05 J | |
| 50 mm |
24.94 km/h
(6.93 m/s)
|
0.09 J | |
| 100 mm |
35.27 km/h
(9.80 m/s)
|
0.18 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 5x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 5x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 450 Mx | 14.5 µWb |
| Współczynnik Pc | 1.55 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 5x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.45 kg | Standard |
| Woda (dno rzeki) |
0.52 kg
(+0.07 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.55
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- w warunkach bezszczelinowych (metal do metalu)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Odstęp (między magnesem a metalem), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość blachy – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Interferencja medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Zagrożenie zapłonem
Proszek powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Smartfony i tablety
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Urazy ciała
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Niszczenie danych
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Ostrożność wymagana
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.
Ryzyko uczulenia
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Zagrożenie dla najmłodszych
Te produkty magnetyczne nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
