MP 5x2.7/1.2x5 C / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030201
GTIN/EAN: 5906301812180
Średnica
5 mm [±0,1 mm]
Średnica wewnętrzna Ø
2.7/1.2 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
0.69 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.75 kg / 7.31 N
Indukcja magnetyczna
553.14 mT / 5531 Gs
Powłoka
[NiCuNi] nikiel
0.836 ZŁ z VAT / szt. + cena za transport
0.680 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie daj znać przez
formularz zgłoszeniowy
przez naszą stronę.
Moc oraz formę elementów magnetycznych obliczysz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane - MP 5x2.7/1.2x5 C / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 5x2.7/1.2x5 C / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030201 |
| GTIN/EAN | 5906301812180 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 5 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 2.7/1.2 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 0.69 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.75 kg / 7.31 N |
| Indukcja magnetyczna ~ ? | 553.14 mT / 5531 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe wartości stanowią rezultat analizy matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 5x2.7/1.2x5 C / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 750.0 g
7.4 N
|
słaby uchwyt |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 287.5 g
2.8 N
|
słaby uchwyt |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 93.9 g
0.9 N
|
słaby uchwyt |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 31.9 g
0.3 N
|
słaby uchwyt |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 5.1 g
0.1 N
|
słaby uchwyt |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 5x2.7/1.2x5 C / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 5x2.7/1.2x5 C / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 225.0 g
2.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 150.0 g
1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 75.0 g
0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 375.0 g
3.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 5x2.7/1.2x5 C / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 75.0 g
0.7 N
|
| 1 mm |
|
0.19 kg / 187.5 g
1.8 N
|
| 2 mm |
|
0.38 kg / 375.0 g
3.7 N
|
| 5 mm |
|
0.75 kg / 750.0 g
7.4 N
|
| 10 mm |
|
0.75 kg / 750.0 g
7.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MP 5x2.7/1.2x5 C / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 750.0 g
7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 733.5 g
7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 717.0 g
7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 700.5 g
6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 534.0 g
5.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MP 5x2.7/1.2x5 C / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.75 kg / 2747 g
26.9 N
5 924 Gs
|
N/A |
| 1 mm |
1.77 kg / 1768 g
17.3 N
8 541 Gs
|
1.59 kg / 1592 g
15.6 N
~0 Gs
|
| 2 mm |
1.05 kg / 1053 g
10.3 N
6 590 Gs
|
0.95 kg / 948 g
9.3 N
~0 Gs
|
| 3 mm |
0.60 kg / 604 g
5.9 N
4 992 Gs
|
0.54 kg / 544 g
5.3 N
~0 Gs
|
| 5 mm |
0.20 kg / 198 g
1.9 N
2 860 Gs
|
0.18 kg / 178 g
1.8 N
~0 Gs
|
| 10 mm |
0.02 kg / 19 g
0.2 N
880 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
184 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 5x2.7/1.2x5 C / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MP 5x2.7/1.2x5 C / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 5x2.7/1.2x5 C / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 5x2.7/1.2x5 C / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 862 Mx | 8.6 µWb |
| Współczynnik Pc | 0.83 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 5x2.7/1.2x5 C / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.75 kg | Standard |
| Woda (dno rzeki) |
0.86 kg
(+0.11 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.83
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia ucieka na drugą stronę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig mierzono stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Ostrzeżenia
Kruchość materiału
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Bezpieczny dystans
Ekstremalne oddziaływanie może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Ryzyko uczulenia
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Zagrożenie dla najmłodszych
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Zagrożenie fizyczne
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Łatwopalność
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Maksymalna temperatura
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
