MPL 40x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020152
GTIN/EAN: 5906301811589
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
15 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.85 kg / 116.27 N
Indukcja magnetyczna
321.37 mT / 3214 Gs
Powłoka
[NiCuNi] nikiel
6.03 ZŁ z VAT / szt. + cena za transport
4.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz jaki magnes kupić?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz kontaktowy
na stronie kontakt.
Moc oraz kształt magnesów neodymowych zobaczysz u nas w
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MPL 40x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 40x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020152 |
| GTIN/EAN | 5906301811589 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.85 kg / 116.27 N |
| Indukcja magnetyczna ~ ? | 321.37 mT / 3214 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione informacje są wynik symulacji fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
MPL 40x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3212 Gs
321.2 mT
|
11.85 kg / 11850.0 g
116.2 N
|
niebezpieczny! |
| 1 mm |
2791 Gs
279.1 mT
|
8.95 kg / 8947.7 g
87.8 N
|
średnie ryzyko |
| 2 mm |
2358 Gs
235.8 mT
|
6.38 kg / 6384.9 g
62.6 N
|
średnie ryzyko |
| 3 mm |
1965 Gs
196.5 mT
|
4.43 kg / 4432.4 g
43.5 N
|
średnie ryzyko |
| 5 mm |
1360 Gs
136.0 mT
|
2.12 kg / 2122.9 g
20.8 N
|
średnie ryzyko |
| 10 mm |
615 Gs
61.5 mT
|
0.43 kg / 434.1 g
4.3 N
|
słaby uchwyt |
| 15 mm |
329 Gs
32.9 mT
|
0.12 kg / 124.5 g
1.2 N
|
słaby uchwyt |
| 20 mm |
195 Gs
19.5 mT
|
0.04 kg / 43.9 g
0.4 N
|
słaby uchwyt |
| 30 mm |
83 Gs
8.3 mT
|
0.01 kg / 8.0 g
0.1 N
|
słaby uchwyt |
| 50 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.6 g
0.0 N
|
słaby uchwyt |
MPL 40x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.37 kg / 2370.0 g
23.2 N
|
| 1 mm | Stal (~0.2) |
1.79 kg / 1790.0 g
17.6 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 1276.0 g
12.5 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 886.0 g
8.7 N
|
| 5 mm | Stal (~0.2) |
0.42 kg / 424.0 g
4.2 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 86.0 g
0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 40x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.55 kg / 3555.0 g
34.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.37 kg / 2370.0 g
23.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.19 kg / 1185.0 g
11.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.93 kg / 5925.0 g
58.1 N
|
MPL 40x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.59 kg / 592.5 g
5.8 N
|
| 1 mm |
|
1.48 kg / 1481.3 g
14.5 N
|
| 2 mm |
|
2.96 kg / 2962.5 g
29.1 N
|
| 5 mm |
|
7.41 kg / 7406.3 g
72.7 N
|
| 10 mm |
|
11.85 kg / 11850.0 g
116.2 N
|
MPL 40x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.85 kg / 11850.0 g
116.2 N
|
OK |
| 40 °C | -2.2% |
11.59 kg / 11589.3 g
113.7 N
|
OK |
| 60 °C | -4.4% |
11.33 kg / 11328.6 g
111.1 N
|
|
| 80 °C | -6.6% |
11.07 kg / 11067.9 g
108.6 N
|
|
| 100 °C | -28.8% |
8.44 kg / 8437.2 g
82.8 N
|
MPL 40x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
25.44 kg / 25444 g
249.6 N
4 569 Gs
|
N/A |
| 1 mm |
22.33 kg / 22326 g
219.0 N
6 018 Gs
|
20.09 kg / 20093 g
197.1 N
~0 Gs
|
| 2 mm |
19.21 kg / 19213 g
188.5 N
5 582 Gs
|
17.29 kg / 17291 g
169.6 N
~0 Gs
|
| 3 mm |
16.31 kg / 16311 g
160.0 N
5 144 Gs
|
14.68 kg / 14680 g
144.0 N
~0 Gs
|
| 5 mm |
11.45 kg / 11445 g
112.3 N
4 309 Gs
|
10.30 kg / 10301 g
101.0 N
~0 Gs
|
| 10 mm |
4.56 kg / 4558 g
44.7 N
2 719 Gs
|
4.10 kg / 4102 g
40.2 N
~0 Gs
|
| 20 mm |
0.93 kg / 932 g
9.1 N
1 230 Gs
|
0.84 kg / 839 g
8.2 N
~0 Gs
|
| 50 mm |
0.04 kg / 38 g
0.4 N
249 Gs
|
0.03 kg / 34 g
0.3 N
~0 Gs
|
MPL 40x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 40x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.99 km/h
(8.05 m/s)
|
0.49 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.40 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
2.33 J | |
| 100 mm |
89.64 km/h
(24.90 m/s)
|
4.65 J |
MPL 40x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 40x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 419 Mx | 114.2 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
MPL 40x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.85 kg | Standard |
| Woda (dno rzeki) |
13.57 kg
(+1.72 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) mają estetyczny, metaliczny wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- przy bezpośrednim styku (brak farby)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają właściwości magnetyczne i udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między magnesem, a blachą obniża udźwig.
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Tylko dla dorosłych
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Ryzyko złamań
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Ryzyko pęknięcia
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Dla uczulonych
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie życia
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
