MW 15x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010032
GTIN/EAN: 5906301810315
Średnica Ø
15 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
10.6 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.37 kg / 72.28 N
Indukcja magnetyczna
451.96 mT / 4520 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie zostaw wiadomość poprzez
formularz zgłoszeniowy
na naszej stronie.
Masę oraz formę magnesu sprawdzisz dzięki naszemu
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry - MW 15x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010032 |
| GTIN/EAN | 5906301810315 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 10.6 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.37 kg / 72.28 N |
| Indukcja magnetyczna ~ ? | 451.96 mT / 4520 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Przedstawione dane są rezultat kalkulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 15x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4518 Gs
451.8 mT
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
uwaga |
| 1 mm |
3944 Gs
394.4 mT
|
5.62 kg / 12.38 lbs
5616.2 g / 55.1 N
|
uwaga |
| 2 mm |
3362 Gs
336.2 mT
|
4.08 kg / 9.00 lbs
4083.1 g / 40.1 N
|
uwaga |
| 3 mm |
2820 Gs
282.0 mT
|
2.87 kg / 6.33 lbs
2871.9 g / 28.2 N
|
uwaga |
| 5 mm |
1931 Gs
193.1 mT
|
1.35 kg / 2.97 lbs
1346.9 g / 13.2 N
|
niskie ryzyko |
| 10 mm |
763 Gs
76.3 mT
|
0.21 kg / 0.46 lbs
210.3 g / 2.1 N
|
niskie ryzyko |
| 15 mm |
349 Gs
34.9 mT
|
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
niskie ryzyko |
| 20 mm |
184 Gs
18.4 mT
|
0.01 kg / 0.03 lbs
12.2 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 15x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| 1 mm | Stal (~0.2) |
1.12 kg / 2.48 lbs
1124.0 g / 11.0 N
|
| 2 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
816.0 g / 8.0 N
|
| 3 mm | Stal (~0.2) |
0.57 kg / 1.27 lbs
574.0 g / 5.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 15x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.21 kg / 4.87 lbs
2211.0 g / 21.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.74 kg / 1.62 lbs
737.0 g / 7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.69 kg / 8.12 lbs
3685.0 g / 36.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 15x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.62 lbs
737.0 g / 7.2 N
|
| 1 mm |
|
1.84 kg / 4.06 lbs
1842.5 g / 18.1 N
|
| 2 mm |
|
3.69 kg / 8.12 lbs
3685.0 g / 36.1 N
|
| 3 mm |
|
5.53 kg / 12.19 lbs
5527.5 g / 54.2 N
|
| 5 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 10 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 11 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 12 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 15x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
OK |
| 40 °C | -2.2% |
7.21 kg / 15.89 lbs
7207.9 g / 70.7 N
|
OK |
| 60 °C | -4.4% |
7.05 kg / 15.53 lbs
7045.7 g / 69.1 N
|
OK |
| 80 °C | -6.6% |
6.88 kg / 15.18 lbs
6883.6 g / 67.5 N
|
|
| 100 °C | -28.8% |
5.25 kg / 11.57 lbs
5247.4 g / 51.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 15x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.23 kg / 49.02 lbs
5 606 Gs
|
3.34 kg / 7.35 lbs
3335 g / 32.7 N
|
N/A |
| 1 mm |
19.55 kg / 43.11 lbs
8 473 Gs
|
2.93 kg / 6.47 lbs
2933 g / 28.8 N
|
17.60 kg / 38.80 lbs
~0 Gs
|
| 2 mm |
16.94 kg / 37.35 lbs
7 887 Gs
|
2.54 kg / 5.60 lbs
2541 g / 24.9 N
|
15.25 kg / 33.62 lbs
~0 Gs
|
| 3 mm |
14.52 kg / 32.00 lbs
7 301 Gs
|
2.18 kg / 4.80 lbs
2178 g / 21.4 N
|
13.07 kg / 28.80 lbs
~0 Gs
|
| 5 mm |
10.37 kg / 22.85 lbs
6 169 Gs
|
1.55 kg / 3.43 lbs
1555 g / 15.3 N
|
9.33 kg / 20.57 lbs
~0 Gs
|
| 10 mm |
4.06 kg / 8.96 lbs
3 862 Gs
|
0.61 kg / 1.34 lbs
609 g / 6.0 N
|
3.66 kg / 8.06 lbs
~0 Gs
|
| 20 mm |
0.63 kg / 1.40 lbs
1 526 Gs
|
0.10 kg / 0.21 lbs
95 g / 0.9 N
|
0.57 kg / 1.26 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
215 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
136 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
91 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
64 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 15x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 15x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.06 km/h
(7.52 m/s)
|
0.30 J | |
| 30 mm |
46.07 km/h
(12.80 m/s)
|
0.87 J | |
| 50 mm |
59.46 km/h
(16.52 m/s)
|
1.45 J | |
| 100 mm |
84.09 km/h
(23.36 m/s)
|
2.89 J |
Tabela 9: Odporność na korozję
MW 15x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 15x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 074 Mx | 80.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 15x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.37 kg | Standard |
| Woda (dno rzeki) |
8.44 kg
(+1.07 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki powłoce (NiCuNi, Au, Ag) zyskują estetyczny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- której grubość to min. 10 mm
- o szlifowanej powierzchni kontaktu
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Szczelina – obecność ciała obcego (farba, taśma, szczelina) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda stal nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Bezpieczny dystans
Potężne oddziaływanie może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ryzyko połknięcia
Neodymowe magnesy to nie zabawki. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Przegrzanie magnesu
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Siła zgniatająca
Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Uszkodzenia czujników
Silne pole magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Zakaz obróbki
Proszek powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Dla uczulonych
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
