MW 15x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010027
GTIN: 5906301810261
Średnica Ø
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
13.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.70 kg / 75.55 N
Indukcja magnetyczna
495.60 mT / 4956 Gs
Powłoka
[NiCuNi] nikiel
4.51 ZŁ z VAT / szt. + cena za transport
3.67 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie pisz poprzez
formularz kontaktowy
na stronie kontakt.
Udźwig oraz wygląd magnesu neodymowego wyliczysz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
MW 15x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 15x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010027 |
| GTIN | 5906301810261 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 13.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.70 kg / 75.55 N |
| Indukcja magnetyczna ~ ? | 495.60 mT / 4956 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu - dane
Poniższe dane stanowią rezultat analizy matematycznej. Wartości zostały wyliczone na algorytmach dla klasy NdFeB. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MW 15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4954 Gs
495.4 mT
|
7.70 kg / 7700.0 g
75.5 N
|
mocny |
| 1 mm |
4303 Gs
430.3 mT
|
5.81 kg / 5810.9 g
57.0 N
|
mocny |
| 2 mm |
3660 Gs
366.0 mT
|
4.20 kg / 4203.8 g
41.2 N
|
mocny |
| 3 mm |
3068 Gs
306.8 mT
|
2.95 kg / 2953.2 g
29.0 N
|
mocny |
| 5 mm |
2106 Gs
210.6 mT
|
1.39 kg / 1392.2 g
13.7 N
|
niskie ryzyko |
| 10 mm |
845 Gs
84.5 mT
|
0.22 kg / 224.2 g
2.2 N
|
niskie ryzyko |
| 15 mm |
393 Gs
39.3 mT
|
0.05 kg / 48.5 g
0.5 N
|
niskie ryzyko |
| 20 mm |
210 Gs
21.0 mT
|
0.01 kg / 13.8 g
0.1 N
|
niskie ryzyko |
| 30 mm |
79 Gs
7.9 mT
|
0.00 kg / 2.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
MW 15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 1540.0 g
15.1 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 1162.0 g
11.4 N
|
| 2 mm | Stal (~0.2) |
0.84 kg / 840.0 g
8.2 N
|
| 3 mm | Stal (~0.2) |
0.59 kg / 590.0 g
5.8 N
|
| 5 mm | Stal (~0.2) |
0.28 kg / 278.0 g
2.7 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.31 kg / 2310.0 g
22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 1540.0 g
15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 770.0 g
7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.85 kg / 3850.0 g
37.8 N
|
MW 15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 770.0 g
7.6 N
|
| 1 mm |
|
1.93 kg / 1925.0 g
18.9 N
|
| 2 mm |
|
3.85 kg / 3850.0 g
37.8 N
|
| 5 mm |
|
7.70 kg / 7700.0 g
75.5 N
|
| 10 mm |
|
7.70 kg / 7700.0 g
75.5 N
|
MW 15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.70 kg / 7700.0 g
75.5 N
|
OK |
| 40 °C | -2.2% |
7.53 kg / 7530.6 g
73.9 N
|
OK |
| 60 °C | -4.4% |
7.36 kg / 7361.2 g
72.2 N
|
OK |
| 80 °C | -6.6% |
7.19 kg / 7191.8 g
70.6 N
|
|
| 100 °C | -28.8% |
5.48 kg / 5482.4 g
53.8 N
|
MW 15x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
7.72 kg / 7720 g
75.7 N
9 920 Gs
|
N/A |
| 1 mm |
5.81 kg / 5811 g
57.0 N
9 265 Gs
|
5.23 kg / 5230 g
51.3 N
~0 Gs
|
| 2 mm |
4.20 kg / 4204 g
41.2 N
8 606 Gs
|
3.78 kg / 3783 g
37.1 N
~0 Gs
|
| 3 mm |
2.95 kg / 2953 g
29.0 N
7 955 Gs
|
2.66 kg / 2658 g
26.1 N
~0 Gs
|
| 5 mm |
1.39 kg / 1392 g
13.7 N
6 712 Gs
|
1.25 kg / 1253 g
12.3 N
~0 Gs
|
| 10 mm |
0.22 kg / 224 g
2.2 N
4 213 Gs
|
0.20 kg / 202 g
2.0 N
~0 Gs
|
| 20 mm |
0.01 kg / 14 g
0.1 N
1 690 Gs
|
0.01 kg / 12 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
248 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.75 km/h
(6.88 m/s)
|
0.31 J | |
| 30 mm |
42.12 km/h
(11.70 m/s)
|
0.91 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.51 J | |
| 100 mm |
76.88 km/h
(21.36 m/s)
|
3.02 J |
MW 15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 827 Mx | 88.3 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
MW 15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.70 kg | Standard |
| Woda (dno rzeki) |
8.82 kg
(+1.12 kg Zysk z wyporności)
|
+14.5% |
Sprawdź inne oferty
Wady i zalety magnesów z neodymu NdFeB.
Poza ponadprzeciętną energią, nasze magnesy gwarantują wiele innych atutów::
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Najwyższa nośność magnesu – co się na to składa?
Informacja o udźwigu została określona dla optymalnej konfiguracji, uwzględniającej:
- z wykorzystaniem płyty ze miękkiej stali, która służy jako element zamykający obwód
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni kontaktu
- przy zerowej szczelinie (bez farby)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
W praktyce, rzeczywisty udźwig zależy od szeregu czynników, wymienionych od najbardziej istotnych:
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość blachy – za chuda stal powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
* Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Implanty medyczne
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Siła neodymu
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Ryzyko uczulenia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zagrożenie fizyczne
Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa silne magnesy.
Safety First!
Więcej informacji o zagrożeniach w artykule: BHP magnesów z neodymu.
