MW 15x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010027
GTIN/EAN: 5906301810261
Średnica Ø
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
13.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.70 kg / 75.55 N
Indukcja magnetyczna
495.60 mT / 4956 Gs
Powłoka
[NiCuNi] nikiel
4.51 ZŁ z VAT / szt. + cena za transport
3.67 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie napisz korzystając z
formularz zgłoszeniowy
na stronie kontakt.
Siłę oraz formę magnesu neodymowego sprawdzisz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MW 15x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010027 |
| GTIN/EAN | 5906301810261 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 13.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.70 kg / 75.55 N |
| Indukcja magnetyczna ~ ? | 495.60 mT / 4956 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Przedstawione wartości stanowią wynik analizy inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4954 Gs
495.4 mT
|
7.70 kg / 7700.0 g
75.5 N
|
uwaga |
| 1 mm |
4303 Gs
430.3 mT
|
5.81 kg / 5810.9 g
57.0 N
|
uwaga |
| 2 mm |
3660 Gs
366.0 mT
|
4.20 kg / 4203.8 g
41.2 N
|
uwaga |
| 3 mm |
3068 Gs
306.8 mT
|
2.95 kg / 2953.2 g
29.0 N
|
uwaga |
| 5 mm |
2106 Gs
210.6 mT
|
1.39 kg / 1392.2 g
13.7 N
|
bezpieczny |
| 10 mm |
845 Gs
84.5 mT
|
0.22 kg / 224.2 g
2.2 N
|
bezpieczny |
| 15 mm |
393 Gs
39.3 mT
|
0.05 kg / 48.5 g
0.5 N
|
bezpieczny |
| 20 mm |
210 Gs
21.0 mT
|
0.01 kg / 13.8 g
0.1 N
|
bezpieczny |
| 30 mm |
79 Gs
7.9 mT
|
0.00 kg / 2.0 g
0.0 N
|
bezpieczny |
| 50 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 1540.0 g
15.1 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 1162.0 g
11.4 N
|
| 2 mm | Stal (~0.2) |
0.84 kg / 840.0 g
8.2 N
|
| 3 mm | Stal (~0.2) |
0.59 kg / 590.0 g
5.8 N
|
| 5 mm | Stal (~0.2) |
0.28 kg / 278.0 g
2.7 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.31 kg / 2310.0 g
22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 1540.0 g
15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 770.0 g
7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.85 kg / 3850.0 g
37.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 770.0 g
7.6 N
|
| 1 mm |
|
1.93 kg / 1925.0 g
18.9 N
|
| 2 mm |
|
3.85 kg / 3850.0 g
37.8 N
|
| 5 mm |
|
7.70 kg / 7700.0 g
75.5 N
|
| 10 mm |
|
7.70 kg / 7700.0 g
75.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.70 kg / 7700.0 g
75.5 N
|
OK |
| 40 °C | -2.2% |
7.53 kg / 7530.6 g
73.9 N
|
OK |
| 60 °C | -4.4% |
7.36 kg / 7361.2 g
72.2 N
|
OK |
| 80 °C | -6.6% |
7.19 kg / 7191.8 g
70.6 N
|
|
| 100 °C | -28.8% |
5.48 kg / 5482.4 g
53.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 15x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
26.73 kg / 26732 g
262.2 N
5 797 Gs
|
N/A |
| 1 mm |
23.38 kg / 23382 g
229.4 N
9 265 Gs
|
21.04 kg / 21044 g
206.4 N
~0 Gs
|
| 2 mm |
20.17 kg / 20174 g
197.9 N
8 606 Gs
|
18.16 kg / 18156 g
178.1 N
~0 Gs
|
| 3 mm |
17.23 kg / 17234 g
169.1 N
7 955 Gs
|
15.51 kg / 15510 g
152.2 N
~0 Gs
|
| 5 mm |
12.27 kg / 12269 g
120.4 N
6 712 Gs
|
11.04 kg / 11042 g
108.3 N
~0 Gs
|
| 10 mm |
4.83 kg / 4833 g
47.4 N
4 213 Gs
|
4.35 kg / 4350 g
42.7 N
~0 Gs
|
| 20 mm |
0.78 kg / 778 g
7.6 N
1 690 Gs
|
0.70 kg / 701 g
6.9 N
~0 Gs
|
| 50 mm |
0.02 kg / 17 g
0.2 N
248 Gs
|
0.02 kg / 15 g
0.1 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.75 km/h
(6.88 m/s)
|
0.31 J | |
| 30 mm |
42.12 km/h
(11.70 m/s)
|
0.91 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.51 J | |
| 100 mm |
76.88 km/h
(21.36 m/s)
|
3.02 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 827 Mx | 88.3 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.70 kg | Standard |
| Woda (dno rzeki) |
8.82 kg
(+1.12 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- o szlifowanej powierzchni styku
- przy zerowej szczelinie (brak powłok)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Co wpływa na udźwig w praktyce
- Szczelina – występowanie ciała obcego (rdza, brud, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Implanty medyczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Zagrożenie fizyczne
Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ochrona oczu
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Niszczenie danych
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Zagrożenie wybuchem pyłu
Pył powstający podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Nie dawać dzieciom
Magnesy neodymowe to nie zabawki. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Alergia na nikiel
Część populacji posiada nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może wywołać wysypkę. Rekomendujemy stosowanie rękawiczek ochronnych.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
