MW 15x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010027
GTIN/EAN: 5906301810261
Średnica Ø
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
13.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.70 kg / 75.55 N
Indukcja magnetyczna
495.60 mT / 4956 Gs
Powłoka
[NiCuNi] nikiel
4.51 ZŁ z VAT / szt. + cena za transport
3.67 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub pisz przez
formularz zgłoszeniowy
na naszej stronie.
Siłę a także wygląd elementów magnetycznych testujesz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MW 15x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010027 |
| GTIN/EAN | 5906301810261 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 13.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.70 kg / 75.55 N |
| Indukcja magnetyczna ~ ? | 495.60 mT / 4956 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Poniższe wartości są bezpośredni efekt kalkulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4954 Gs
495.4 mT
|
7.70 kg / 7700.0 g
75.5 N
|
mocny |
| 1 mm |
4303 Gs
430.3 mT
|
5.81 kg / 5810.9 g
57.0 N
|
mocny |
| 2 mm |
3660 Gs
366.0 mT
|
4.20 kg / 4203.8 g
41.2 N
|
mocny |
| 3 mm |
3068 Gs
306.8 mT
|
2.95 kg / 2953.2 g
29.0 N
|
mocny |
| 5 mm |
2106 Gs
210.6 mT
|
1.39 kg / 1392.2 g
13.7 N
|
słaby uchwyt |
| 10 mm |
845 Gs
84.5 mT
|
0.22 kg / 224.2 g
2.2 N
|
słaby uchwyt |
| 15 mm |
393 Gs
39.3 mT
|
0.05 kg / 48.5 g
0.5 N
|
słaby uchwyt |
| 20 mm |
210 Gs
21.0 mT
|
0.01 kg / 13.8 g
0.1 N
|
słaby uchwyt |
| 30 mm |
79 Gs
7.9 mT
|
0.00 kg / 2.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 1540.0 g
15.1 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 1162.0 g
11.4 N
|
| 2 mm | Stal (~0.2) |
0.84 kg / 840.0 g
8.2 N
|
| 3 mm | Stal (~0.2) |
0.59 kg / 590.0 g
5.8 N
|
| 5 mm | Stal (~0.2) |
0.28 kg / 278.0 g
2.7 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.31 kg / 2310.0 g
22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 1540.0 g
15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 770.0 g
7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.85 kg / 3850.0 g
37.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 770.0 g
7.6 N
|
| 1 mm |
|
1.93 kg / 1925.0 g
18.9 N
|
| 2 mm |
|
3.85 kg / 3850.0 g
37.8 N
|
| 5 mm |
|
7.70 kg / 7700.0 g
75.5 N
|
| 10 mm |
|
7.70 kg / 7700.0 g
75.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.70 kg / 7700.0 g
75.5 N
|
OK |
| 40 °C | -2.2% |
7.53 kg / 7530.6 g
73.9 N
|
OK |
| 60 °C | -4.4% |
7.36 kg / 7361.2 g
72.2 N
|
OK |
| 80 °C | -6.6% |
7.19 kg / 7191.8 g
70.6 N
|
|
| 100 °C | -28.8% |
5.48 kg / 5482.4 g
53.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 15x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
26.73 kg / 26732 g
262.2 N
5 797 Gs
|
N/A |
| 1 mm |
23.38 kg / 23382 g
229.4 N
9 265 Gs
|
21.04 kg / 21044 g
206.4 N
~0 Gs
|
| 2 mm |
20.17 kg / 20174 g
197.9 N
8 606 Gs
|
18.16 kg / 18156 g
178.1 N
~0 Gs
|
| 3 mm |
17.23 kg / 17234 g
169.1 N
7 955 Gs
|
15.51 kg / 15510 g
152.2 N
~0 Gs
|
| 5 mm |
12.27 kg / 12269 g
120.4 N
6 712 Gs
|
11.04 kg / 11042 g
108.3 N
~0 Gs
|
| 10 mm |
4.83 kg / 4833 g
47.4 N
4 213 Gs
|
4.35 kg / 4350 g
42.7 N
~0 Gs
|
| 20 mm |
0.78 kg / 778 g
7.6 N
1 690 Gs
|
0.70 kg / 701 g
6.9 N
~0 Gs
|
| 50 mm |
0.02 kg / 17 g
0.2 N
248 Gs
|
0.02 kg / 15 g
0.1 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.75 km/h
(6.88 m/s)
|
0.31 J | |
| 30 mm |
42.12 km/h
(11.70 m/s)
|
0.91 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.51 J | |
| 100 mm |
76.88 km/h
(21.36 m/s)
|
3.02 J |
Tabela 9: Parametry powłoki (trwałość)
MW 15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 827 Mx | 88.3 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.70 kg | Standard |
| Woda (dno rzeki) |
8.82 kg
(+1.12 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi tylko ~1% (wg testów).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- z płaszczyzną idealnie równą
- przy zerowej szczelinie (brak farby)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Ostrzeżenia
Zakłócenia GPS i telefonów
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Zakaz obróbki
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Bezpieczny dystans
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Reakcje alergiczne
Część populacji wykazuje alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może powodować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.
Rozruszniki serca
Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie implantu.
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Uszkodzenia ciała
Bloki magnetyczne mogą połamać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
