MW 70x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010095
GTIN/EAN: 5906301810940
Średnica Ø
70 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
577.27 g
Kierunek magnesowania
↑ osiowy
Udźwig
99.83 kg / 979.31 N
Indukcja magnetyczna
307.57 mT / 3076 Gs
Powłoka
[NiCuNi] nikiel
239.85 ZŁ z VAT / szt. + cena za transport
195.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
lub daj znać korzystając z
formularz zapytania
na stronie kontakt.
Masę a także budowę magnesów testujesz w naszym
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MW 70x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010095 |
| GTIN/EAN | 5906301810940 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 577.27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 99.83 kg / 979.31 N |
| Indukcja magnetyczna ~ ? | 307.57 mT / 3076 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione wartości są rezultat kalkulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 70x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3075 Gs
307.5 mT
|
99.83 kg / 220.09 lbs
99830.0 g / 979.3 N
|
miażdżący |
| 1 mm |
3013 Gs
301.3 mT
|
95.80 kg / 211.21 lbs
95804.4 g / 939.8 N
|
miażdżący |
| 2 mm |
2946 Gs
294.6 mT
|
91.59 kg / 201.92 lbs
91587.7 g / 898.5 N
|
miażdżący |
| 3 mm |
2875 Gs
287.5 mT
|
87.27 kg / 192.39 lbs
87266.0 g / 856.1 N
|
miażdżący |
| 5 mm |
2727 Gs
272.7 mT
|
78.48 kg / 173.02 lbs
78482.2 g / 769.9 N
|
miażdżący |
| 10 mm |
2332 Gs
233.2 mT
|
57.38 kg / 126.50 lbs
57380.6 g / 562.9 N
|
miażdżący |
| 15 mm |
1942 Gs
194.2 mT
|
39.80 kg / 87.73 lbs
39795.7 g / 390.4 N
|
miażdżący |
| 20 mm |
1590 Gs
159.0 mT
|
26.68 kg / 58.82 lbs
26680.3 g / 261.7 N
|
miażdżący |
| 30 mm |
1044 Gs
104.4 mT
|
11.51 kg / 25.38 lbs
11511.2 g / 112.9 N
|
miażdżący |
| 50 mm |
466 Gs
46.6 mT
|
2.29 kg / 5.06 lbs
2294.1 g / 22.5 N
|
średnie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 70x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
19.97 kg / 44.02 lbs
19966.0 g / 195.9 N
|
| 1 mm | Stal (~0.2) |
19.16 kg / 42.24 lbs
19160.0 g / 188.0 N
|
| 2 mm | Stal (~0.2) |
18.32 kg / 40.38 lbs
18318.0 g / 179.7 N
|
| 3 mm | Stal (~0.2) |
17.45 kg / 38.48 lbs
17454.0 g / 171.2 N
|
| 5 mm | Stal (~0.2) |
15.70 kg / 34.60 lbs
15696.0 g / 154.0 N
|
| 10 mm | Stal (~0.2) |
11.48 kg / 25.30 lbs
11476.0 g / 112.6 N
|
| 15 mm | Stal (~0.2) |
7.96 kg / 17.55 lbs
7960.0 g / 78.1 N
|
| 20 mm | Stal (~0.2) |
5.34 kg / 11.76 lbs
5336.0 g / 52.3 N
|
| 30 mm | Stal (~0.2) |
2.30 kg / 5.08 lbs
2302.0 g / 22.6 N
|
| 50 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 70x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
29.95 kg / 66.03 lbs
29949.0 g / 293.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
19.97 kg / 44.02 lbs
19966.0 g / 195.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.98 kg / 22.01 lbs
9983.0 g / 97.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
49.92 kg / 110.04 lbs
49915.0 g / 489.7 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 70x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.33 kg / 7.34 lbs
3327.7 g / 32.6 N
|
| 1 mm |
|
8.32 kg / 18.34 lbs
8319.2 g / 81.6 N
|
| 2 mm |
|
16.64 kg / 36.68 lbs
16638.3 g / 163.2 N
|
| 3 mm |
|
24.96 kg / 55.02 lbs
24957.5 g / 244.8 N
|
| 5 mm |
|
41.60 kg / 91.70 lbs
41595.8 g / 408.1 N
|
| 10 mm |
|
83.19 kg / 183.41 lbs
83191.7 g / 816.1 N
|
| 11 mm |
|
91.51 kg / 201.75 lbs
91510.8 g / 897.7 N
|
| 12 mm |
|
99.83 kg / 220.09 lbs
99830.0 g / 979.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 70x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
99.83 kg / 220.09 lbs
99830.0 g / 979.3 N
|
OK |
| 40 °C | -2.2% |
97.63 kg / 215.25 lbs
97633.7 g / 957.8 N
|
OK |
| 60 °C | -4.4% |
95.44 kg / 210.40 lbs
95437.5 g / 936.2 N
|
|
| 80 °C | -6.6% |
93.24 kg / 205.56 lbs
93241.2 g / 914.7 N
|
|
| 100 °C | -28.8% |
71.08 kg / 156.70 lbs
71079.0 g / 697.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 70x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
224.41 kg / 494.73 lbs
4 665 Gs
|
33.66 kg / 74.21 lbs
33661 g / 330.2 N
|
N/A |
| 1 mm |
219.98 kg / 484.97 lbs
6 090 Gs
|
33.00 kg / 72.74 lbs
32997 g / 323.7 N
|
197.98 kg / 436.47 lbs
~0 Gs
|
| 2 mm |
215.36 kg / 474.78 lbs
6 026 Gs
|
32.30 kg / 71.22 lbs
32304 g / 316.9 N
|
193.82 kg / 427.31 lbs
~0 Gs
|
| 3 mm |
210.66 kg / 464.41 lbs
5 959 Gs
|
31.60 kg / 69.66 lbs
31598 g / 310.0 N
|
189.59 kg / 417.97 lbs
~0 Gs
|
| 5 mm |
201.05 kg / 443.23 lbs
5 822 Gs
|
30.16 kg / 66.48 lbs
30157 g / 295.8 N
|
180.94 kg / 398.91 lbs
~0 Gs
|
| 10 mm |
176.42 kg / 388.94 lbs
5 454 Gs
|
26.46 kg / 58.34 lbs
26463 g / 259.6 N
|
158.78 kg / 350.05 lbs
~0 Gs
|
| 20 mm |
128.99 kg / 284.36 lbs
4 663 Gs
|
19.35 kg / 42.65 lbs
19348 g / 189.8 N
|
116.09 kg / 255.93 lbs
~0 Gs
|
| 50 mm |
39.50 kg / 87.08 lbs
2 581 Gs
|
5.93 kg / 13.06 lbs
5925 g / 58.1 N
|
35.55 kg / 78.38 lbs
~0 Gs
|
| 60 mm |
25.88 kg / 57.05 lbs
2 089 Gs
|
3.88 kg / 8.56 lbs
3881 g / 38.1 N
|
23.29 kg / 51.34 lbs
~0 Gs
|
| 70 mm |
17.01 kg / 37.49 lbs
1 693 Gs
|
2.55 kg / 5.62 lbs
2551 g / 25.0 N
|
15.31 kg / 33.74 lbs
~0 Gs
|
| 80 mm |
11.28 kg / 24.86 lbs
1 379 Gs
|
1.69 kg / 3.73 lbs
1692 g / 16.6 N
|
10.15 kg / 22.38 lbs
~0 Gs
|
| 90 mm |
7.57 kg / 16.69 lbs
1 130 Gs
|
1.14 kg / 2.50 lbs
1136 g / 11.1 N
|
6.81 kg / 15.02 lbs
~0 Gs
|
| 100 mm |
5.16 kg / 11.37 lbs
932 Gs
|
0.77 kg / 1.71 lbs
774 g / 7.6 N
|
4.64 kg / 10.23 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 70x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 30.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 18.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 70x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.39 km/h
(4.83 m/s)
|
6.73 J | |
| 30 mm |
24.57 km/h
(6.83 m/s)
|
13.45 J | |
| 50 mm |
30.08 km/h
(8.36 m/s)
|
20.15 J | |
| 100 mm |
41.97 km/h
(11.66 m/s)
|
39.23 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 70x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 70x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 128 363 Mx | 1283.6 µWb |
| Współczynnik Pc | 0.39 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 70x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 99.83 kg | Standard |
| Woda (dno rzeki) |
114.31 kg
(+14.48 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.39
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Maksymalna temperatura
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Ryzyko zmiażdżenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Elektronika precyzyjna
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Zakaz obróbki
Proszek powstający podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Ryzyko połknięcia
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Alergia na nikiel
Niektóre osoby posiada uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
