MW 70x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010095
GTIN/EAN: 5906301810940
Średnica Ø
70 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
577.27 g
Kierunek magnesowania
↑ osiowy
Udźwig
99.83 kg / 979.31 N
Indukcja magnetyczna
307.57 mT / 3076 Gs
Powłoka
[NiCuNi] nikiel
239.85 ZŁ z VAT / szt. + cena za transport
195.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
formularz zapytania
w sekcji kontakt.
Parametry oraz wygląd elementów magnetycznych zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 70x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010095 |
| GTIN/EAN | 5906301810940 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 577.27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 99.83 kg / 979.31 N |
| Indukcja magnetyczna ~ ? | 307.57 mT / 3076 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione wartości stanowią rezultat kalkulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 70x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3075 Gs
307.5 mT
|
99.83 kg / 220.09 lbs
99830.0 g / 979.3 N
|
krytyczny poziom |
| 1 mm |
3013 Gs
301.3 mT
|
95.80 kg / 211.21 lbs
95804.4 g / 939.8 N
|
krytyczny poziom |
| 2 mm |
2946 Gs
294.6 mT
|
91.59 kg / 201.92 lbs
91587.7 g / 898.5 N
|
krytyczny poziom |
| 3 mm |
2875 Gs
287.5 mT
|
87.27 kg / 192.39 lbs
87266.0 g / 856.1 N
|
krytyczny poziom |
| 5 mm |
2727 Gs
272.7 mT
|
78.48 kg / 173.02 lbs
78482.2 g / 769.9 N
|
krytyczny poziom |
| 10 mm |
2332 Gs
233.2 mT
|
57.38 kg / 126.50 lbs
57380.6 g / 562.9 N
|
krytyczny poziom |
| 15 mm |
1942 Gs
194.2 mT
|
39.80 kg / 87.73 lbs
39795.7 g / 390.4 N
|
krytyczny poziom |
| 20 mm |
1590 Gs
159.0 mT
|
26.68 kg / 58.82 lbs
26680.3 g / 261.7 N
|
krytyczny poziom |
| 30 mm |
1044 Gs
104.4 mT
|
11.51 kg / 25.38 lbs
11511.2 g / 112.9 N
|
krytyczny poziom |
| 50 mm |
466 Gs
46.6 mT
|
2.29 kg / 5.06 lbs
2294.1 g / 22.5 N
|
średnie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 70x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
19.97 kg / 44.02 lbs
19966.0 g / 195.9 N
|
| 1 mm | Stal (~0.2) |
19.16 kg / 42.24 lbs
19160.0 g / 188.0 N
|
| 2 mm | Stal (~0.2) |
18.32 kg / 40.38 lbs
18318.0 g / 179.7 N
|
| 3 mm | Stal (~0.2) |
17.45 kg / 38.48 lbs
17454.0 g / 171.2 N
|
| 5 mm | Stal (~0.2) |
15.70 kg / 34.60 lbs
15696.0 g / 154.0 N
|
| 10 mm | Stal (~0.2) |
11.48 kg / 25.30 lbs
11476.0 g / 112.6 N
|
| 15 mm | Stal (~0.2) |
7.96 kg / 17.55 lbs
7960.0 g / 78.1 N
|
| 20 mm | Stal (~0.2) |
5.34 kg / 11.76 lbs
5336.0 g / 52.3 N
|
| 30 mm | Stal (~0.2) |
2.30 kg / 5.08 lbs
2302.0 g / 22.6 N
|
| 50 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 70x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
29.95 kg / 66.03 lbs
29949.0 g / 293.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
19.97 kg / 44.02 lbs
19966.0 g / 195.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.98 kg / 22.01 lbs
9983.0 g / 97.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
49.92 kg / 110.04 lbs
49915.0 g / 489.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 70x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.33 kg / 7.34 lbs
3327.7 g / 32.6 N
|
| 1 mm |
|
8.32 kg / 18.34 lbs
8319.2 g / 81.6 N
|
| 2 mm |
|
16.64 kg / 36.68 lbs
16638.3 g / 163.2 N
|
| 3 mm |
|
24.96 kg / 55.02 lbs
24957.5 g / 244.8 N
|
| 5 mm |
|
41.60 kg / 91.70 lbs
41595.8 g / 408.1 N
|
| 10 mm |
|
83.19 kg / 183.41 lbs
83191.7 g / 816.1 N
|
| 11 mm |
|
91.51 kg / 201.75 lbs
91510.8 g / 897.7 N
|
| 12 mm |
|
99.83 kg / 220.09 lbs
99830.0 g / 979.3 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 70x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
99.83 kg / 220.09 lbs
99830.0 g / 979.3 N
|
OK |
| 40 °C | -2.2% |
97.63 kg / 215.25 lbs
97633.7 g / 957.8 N
|
OK |
| 60 °C | -4.4% |
95.44 kg / 210.40 lbs
95437.5 g / 936.2 N
|
|
| 80 °C | -6.6% |
93.24 kg / 205.56 lbs
93241.2 g / 914.7 N
|
|
| 100 °C | -28.8% |
71.08 kg / 156.70 lbs
71079.0 g / 697.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 70x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
224.41 kg / 494.73 lbs
4 665 Gs
|
33.66 kg / 74.21 lbs
33661 g / 330.2 N
|
N/A |
| 1 mm |
219.98 kg / 484.97 lbs
6 090 Gs
|
33.00 kg / 72.74 lbs
32997 g / 323.7 N
|
197.98 kg / 436.47 lbs
~0 Gs
|
| 2 mm |
215.36 kg / 474.78 lbs
6 026 Gs
|
32.30 kg / 71.22 lbs
32304 g / 316.9 N
|
193.82 kg / 427.31 lbs
~0 Gs
|
| 3 mm |
210.66 kg / 464.41 lbs
5 959 Gs
|
31.60 kg / 69.66 lbs
31598 g / 310.0 N
|
189.59 kg / 417.97 lbs
~0 Gs
|
| 5 mm |
201.05 kg / 443.23 lbs
5 822 Gs
|
30.16 kg / 66.48 lbs
30157 g / 295.8 N
|
180.94 kg / 398.91 lbs
~0 Gs
|
| 10 mm |
176.42 kg / 388.94 lbs
5 454 Gs
|
26.46 kg / 58.34 lbs
26463 g / 259.6 N
|
158.78 kg / 350.05 lbs
~0 Gs
|
| 20 mm |
128.99 kg / 284.36 lbs
4 663 Gs
|
19.35 kg / 42.65 lbs
19348 g / 189.8 N
|
116.09 kg / 255.93 lbs
~0 Gs
|
| 50 mm |
39.50 kg / 87.08 lbs
2 581 Gs
|
5.93 kg / 13.06 lbs
5925 g / 58.1 N
|
35.55 kg / 78.38 lbs
~0 Gs
|
| 60 mm |
25.88 kg / 57.05 lbs
2 089 Gs
|
3.88 kg / 8.56 lbs
3881 g / 38.1 N
|
23.29 kg / 51.34 lbs
~0 Gs
|
| 70 mm |
17.01 kg / 37.49 lbs
1 693 Gs
|
2.55 kg / 5.62 lbs
2551 g / 25.0 N
|
15.31 kg / 33.74 lbs
~0 Gs
|
| 80 mm |
11.28 kg / 24.86 lbs
1 379 Gs
|
1.69 kg / 3.73 lbs
1692 g / 16.6 N
|
10.15 kg / 22.38 lbs
~0 Gs
|
| 90 mm |
7.57 kg / 16.69 lbs
1 130 Gs
|
1.14 kg / 2.50 lbs
1136 g / 11.1 N
|
6.81 kg / 15.02 lbs
~0 Gs
|
| 100 mm |
5.16 kg / 11.37 lbs
932 Gs
|
0.77 kg / 1.71 lbs
774 g / 7.6 N
|
4.64 kg / 10.23 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 70x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 30.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 18.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 70x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.39 km/h
(4.83 m/s)
|
6.73 J | |
| 30 mm |
24.57 km/h
(6.83 m/s)
|
13.45 J | |
| 50 mm |
30.08 km/h
(8.36 m/s)
|
20.15 J | |
| 100 mm |
41.97 km/h
(11.66 m/s)
|
39.23 J |
Tabela 9: Odporność na korozję
MW 70x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 70x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 128 363 Mx | 1283.6 µWb |
| Współczynnik Pc | 0.39 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 70x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 99.83 kg | Standard |
| Woda (dno rzeki) |
114.31 kg
(+14.48 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.39
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której grubość to min. 10 mm
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Wpływ czynników na nośność magnesu w praktyce
- Dystans (pomiędzy magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Ryzyko rozmagnesowania
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i siłę przyciągania.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ogromna siła
Używaj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Zagrożenie dla elektroniki
Potężne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Uwaga: zadławienie
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Rozruszniki serca
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
