MPL 5x5x1.2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020171
GTIN/EAN: 5906301811770
Długość
5 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
1.2 mm [±0,1 mm]
Waga
0.22 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.44 kg / 4.28 N
Indukcja magnetyczna
245.17 mT / 2452 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub zostaw wiadomość za pomocą
formularz kontaktowy
przez naszą stronę.
Parametry i kształt magnesu neodymowego sprawdzisz u nas w
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja techniczna produktu - MPL 5x5x1.2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 5x5x1.2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020171 |
| GTIN/EAN | 5906301811770 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 5 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 1.2 mm [±0,1 mm] |
| Waga | 0.22 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.44 kg / 4.28 N |
| Indukcja magnetyczna ~ ? | 245.17 mT / 2452 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Poniższe informacje stanowią bezpośredni efekt symulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 5x5x1.2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2450 Gs
245.0 mT
|
0.44 kg / 440.0 g
4.3 N
|
słaby uchwyt |
| 1 mm |
1739 Gs
173.9 mT
|
0.22 kg / 221.8 g
2.2 N
|
słaby uchwyt |
| 2 mm |
1054 Gs
105.4 mT
|
0.08 kg / 81.4 g
0.8 N
|
słaby uchwyt |
| 3 mm |
622 Gs
62.2 mT
|
0.03 kg / 28.4 g
0.3 N
|
słaby uchwyt |
| 5 mm |
241 Gs
24.1 mT
|
0.00 kg / 4.3 g
0.0 N
|
słaby uchwyt |
| 10 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 15 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 5x5x1.2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 88.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 5x5x1.2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.13 kg / 132.0 g
1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 88.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 44.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.22 kg / 220.0 g
2.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 5x5x1.2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 44.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 110.0 g
1.1 N
|
| 2 mm |
|
0.22 kg / 220.0 g
2.2 N
|
| 5 mm |
|
0.44 kg / 440.0 g
4.3 N
|
| 10 mm |
|
0.44 kg / 440.0 g
4.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 5x5x1.2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.44 kg / 440.0 g
4.3 N
|
OK |
| 40 °C | -2.2% |
0.43 kg / 430.3 g
4.2 N
|
OK |
| 60 °C | -4.4% |
0.42 kg / 420.6 g
4.1 N
|
|
| 80 °C | -6.6% |
0.41 kg / 411.0 g
4.0 N
|
|
| 100 °C | -28.8% |
0.31 kg / 313.3 g
3.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 5x5x1.2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.92 kg / 925 g
9.1 N
4 027 Gs
|
N/A |
| 1 mm |
0.70 kg / 699 g
6.9 N
4 260 Gs
|
0.63 kg / 629 g
6.2 N
~0 Gs
|
| 2 mm |
0.47 kg / 466 g
4.6 N
3 478 Gs
|
0.42 kg / 420 g
4.1 N
~0 Gs
|
| 3 mm |
0.29 kg / 288 g
2.8 N
2 734 Gs
|
0.26 kg / 259 g
2.5 N
~0 Gs
|
| 5 mm |
0.10 kg / 101 g
1.0 N
1 617 Gs
|
0.09 kg / 91 g
0.9 N
~0 Gs
|
| 10 mm |
0.01 kg / 9 g
0.1 N
482 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
90 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
7 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 5x5x1.2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 5x5x1.2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
45.11 km/h
(12.53 m/s)
|
0.02 J | |
| 30 mm |
78.12 km/h
(21.70 m/s)
|
0.05 J | |
| 50 mm |
100.85 km/h
(28.01 m/s)
|
0.09 J | |
| 100 mm |
142.63 km/h
(39.62 m/s)
|
0.17 J |
Tabela 9: Odporność na korozję
MPL 5x5x1.2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 5x5x1.2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 695 Mx | 7.0 µWb |
| Współczynnik Pc | 0.30 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 5x5x1.2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.44 kg | Standard |
| Woda (dno rzeki) |
0.50 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.30
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi zaledwie ~1% (wg testów).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak zanieczyszczeń)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – zbyt cienka blacha nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Niebezpieczeństwo dla rozruszników
Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Uwaga: zadławienie
Magnesy neodymowe nie służą do zabawy. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Ochrona urządzeń
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Podatność na pękanie
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Elektronika precyzyjna
Silne pole magnetyczne wpływa negatywnie na działanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Łatwopalność
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Uczulenie na powłokę
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
