MPL 100x40x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020109
GTIN/EAN: 5906301811152
Długość
100 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
600 g
Kierunek magnesowania
↑ osiowy
Udźwig
120.01 kg / 1177.33 N
Indukcja magnetyczna
337.24 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
335.30 ZŁ z VAT / szt. + cena za transport
272.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo daj znać za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Masę a także wygląd magnesu zweryfikujesz u nas w
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 100x40x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 100x40x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020109 |
| GTIN/EAN | 5906301811152 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 100 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 600 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 120.01 kg / 1177.33 N |
| Indukcja magnetyczna ~ ? | 337.24 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Niniejsze wartości są wynik symulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 100x40x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3372 Gs
337.2 mT
|
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
krytyczny poziom |
| 1 mm |
3268 Gs
326.8 mT
|
112.70 kg / 248.45 lbs
112695.4 g / 1105.5 N
|
krytyczny poziom |
| 2 mm |
3158 Gs
315.8 mT
|
105.27 kg / 232.09 lbs
105272.6 g / 1032.7 N
|
krytyczny poziom |
| 3 mm |
3046 Gs
304.6 mT
|
97.92 kg / 215.88 lbs
97921.3 g / 960.6 N
|
krytyczny poziom |
| 5 mm |
2818 Gs
281.8 mT
|
83.78 kg / 184.71 lbs
83783.3 g / 821.9 N
|
krytyczny poziom |
| 10 mm |
2266 Gs
226.6 mT
|
54.17 kg / 119.43 lbs
54174.5 g / 531.5 N
|
krytyczny poziom |
| 15 mm |
1794 Gs
179.4 mT
|
33.96 kg / 74.86 lbs
33955.7 g / 333.1 N
|
krytyczny poziom |
| 20 mm |
1419 Gs
141.9 mT
|
21.25 kg / 46.84 lbs
21248.1 g / 208.4 N
|
krytyczny poziom |
| 30 mm |
908 Gs
90.8 mT
|
8.70 kg / 19.17 lbs
8696.3 g / 85.3 N
|
średnie ryzyko |
| 50 mm |
416 Gs
41.6 mT
|
1.83 kg / 4.02 lbs
1825.4 g / 17.9 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 100x40x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
|
| 1 mm | Stal (~0.2) |
22.54 kg / 49.69 lbs
22540.0 g / 221.1 N
|
| 2 mm | Stal (~0.2) |
21.05 kg / 46.42 lbs
21054.0 g / 206.5 N
|
| 3 mm | Stal (~0.2) |
19.58 kg / 43.18 lbs
19584.0 g / 192.1 N
|
| 5 mm | Stal (~0.2) |
16.76 kg / 36.94 lbs
16756.0 g / 164.4 N
|
| 10 mm | Stal (~0.2) |
10.83 kg / 23.88 lbs
10834.0 g / 106.3 N
|
| 15 mm | Stal (~0.2) |
6.79 kg / 14.97 lbs
6792.0 g / 66.6 N
|
| 20 mm | Stal (~0.2) |
4.25 kg / 9.37 lbs
4250.0 g / 41.7 N
|
| 30 mm | Stal (~0.2) |
1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
|
| 50 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 100x40x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
36.00 kg / 79.37 lbs
36003.0 g / 353.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
12.00 kg / 26.46 lbs
12001.0 g / 117.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
60.01 kg / 132.29 lbs
60005.0 g / 588.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 100x40x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
4.00 kg / 8.82 lbs
4000.3 g / 39.2 N
|
| 1 mm |
|
10.00 kg / 22.05 lbs
10000.8 g / 98.1 N
|
| 2 mm |
|
20.00 kg / 44.10 lbs
20001.7 g / 196.2 N
|
| 3 mm |
|
30.00 kg / 66.14 lbs
30002.5 g / 294.3 N
|
| 5 mm |
|
50.00 kg / 110.24 lbs
50004.2 g / 490.5 N
|
| 10 mm |
|
100.01 kg / 220.48 lbs
100008.3 g / 981.1 N
|
| 11 mm |
|
110.01 kg / 242.53 lbs
110009.2 g / 1079.2 N
|
| 12 mm |
|
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 100x40x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
OK |
| 40 °C | -2.2% |
117.37 kg / 258.76 lbs
117369.8 g / 1151.4 N
|
OK |
| 60 °C | -4.4% |
114.73 kg / 252.94 lbs
114729.6 g / 1125.5 N
|
|
| 80 °C | -6.6% |
112.09 kg / 247.11 lbs
112089.3 g / 1099.6 N
|
|
| 100 °C | -28.8% |
85.45 kg / 188.38 lbs
85447.1 g / 838.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 100x40x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
280.40 kg / 618.18 lbs
4 790 Gs
|
42.06 kg / 92.73 lbs
42060 g / 412.6 N
|
N/A |
| 1 mm |
271.97 kg / 599.59 lbs
6 642 Gs
|
40.80 kg / 89.94 lbs
40796 g / 400.2 N
|
244.77 kg / 539.63 lbs
~0 Gs
|
| 2 mm |
263.31 kg / 580.50 lbs
6 535 Gs
|
39.50 kg / 87.08 lbs
39497 g / 387.5 N
|
236.98 kg / 522.45 lbs
~0 Gs
|
| 3 mm |
254.63 kg / 561.37 lbs
6 427 Gs
|
38.20 kg / 84.21 lbs
38195 g / 374.7 N
|
229.17 kg / 505.24 lbs
~0 Gs
|
| 5 mm |
237.35 kg / 523.26 lbs
6 205 Gs
|
35.60 kg / 78.49 lbs
35602 g / 349.3 N
|
213.61 kg / 470.93 lbs
~0 Gs
|
| 10 mm |
195.76 kg / 431.58 lbs
5 635 Gs
|
29.36 kg / 64.74 lbs
29364 g / 288.1 N
|
176.18 kg / 388.42 lbs
~0 Gs
|
| 20 mm |
126.58 kg / 279.06 lbs
4 531 Gs
|
18.99 kg / 41.86 lbs
18987 g / 186.3 N
|
113.92 kg / 251.15 lbs
~0 Gs
|
| 50 mm |
31.47 kg / 69.38 lbs
2 259 Gs
|
4.72 kg / 10.41 lbs
4721 g / 46.3 N
|
28.32 kg / 62.44 lbs
~0 Gs
|
| 60 mm |
20.32 kg / 44.80 lbs
1 815 Gs
|
3.05 kg / 6.72 lbs
3048 g / 29.9 N
|
18.29 kg / 40.32 lbs
~0 Gs
|
| 70 mm |
13.38 kg / 29.50 lbs
1 473 Gs
|
2.01 kg / 4.42 lbs
2007 g / 19.7 N
|
12.04 kg / 26.55 lbs
~0 Gs
|
| 80 mm |
8.98 kg / 19.80 lbs
1 207 Gs
|
1.35 kg / 2.97 lbs
1347 g / 13.2 N
|
8.08 kg / 17.82 lbs
~0 Gs
|
| 90 mm |
6.14 kg / 13.53 lbs
998 Gs
|
0.92 kg / 2.03 lbs
920 g / 9.0 N
|
5.52 kg / 12.18 lbs
~0 Gs
|
| 100 mm |
4.27 kg / 9.40 lbs
832 Gs
|
0.64 kg / 1.41 lbs
640 g / 6.3 N
|
3.84 kg / 8.46 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 100x40x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 30.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 18.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 100x40x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.84 km/h
(4.96 m/s)
|
7.37 J | |
| 30 mm |
25.80 km/h
(7.17 m/s)
|
15.41 J | |
| 50 mm |
32.20 km/h
(8.94 m/s)
|
23.99 J | |
| 100 mm |
45.13 km/h
(12.54 m/s)
|
47.14 J |
Tabela 9: Odporność na korozję
MPL 100x40x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 100x40x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 131 922 Mx | 1319.2 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 100x40x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 120.01 kg | Standard |
| Woda (dno rzeki) |
137.41 kg
(+17.40 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o przekroju nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni styku
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a metalem), bowiem nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Karty i dyski
Potężne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Dla uczulonych
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Produkt nie dla dzieci
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
