MPL 100x40x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020109
GTIN/EAN: 5906301811152
Długość
100 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
600 g
Kierunek magnesowania
↑ osiowy
Udźwig
120.01 kg / 1177.33 N
Indukcja magnetyczna
337.24 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
335.30 ZŁ z VAT / szt. + cena za transport
272.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie pisz korzystając z
formularz kontaktowy
na stronie kontaktowej.
Siłę oraz kształt elementów magnetycznych zweryfikujesz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 100x40x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 100x40x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020109 |
| GTIN/EAN | 5906301811152 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 100 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 600 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 120.01 kg / 1177.33 N |
| Indukcja magnetyczna ~ ? | 337.24 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe wartości stanowią bezpośredni efekt symulacji fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 100x40x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3372 Gs
337.2 mT
|
120.01 kg / 120010.0 g
1177.3 N
|
miażdżący |
| 1 mm |
3268 Gs
326.8 mT
|
112.70 kg / 112695.4 g
1105.5 N
|
miażdżący |
| 2 mm |
3158 Gs
315.8 mT
|
105.27 kg / 105272.6 g
1032.7 N
|
miażdżący |
| 3 mm |
3046 Gs
304.6 mT
|
97.92 kg / 97921.3 g
960.6 N
|
miażdżący |
| 5 mm |
2818 Gs
281.8 mT
|
83.78 kg / 83783.3 g
821.9 N
|
miażdżący |
| 10 mm |
2266 Gs
226.6 mT
|
54.17 kg / 54174.5 g
531.5 N
|
miażdżący |
| 15 mm |
1794 Gs
179.4 mT
|
33.96 kg / 33955.7 g
333.1 N
|
miażdżący |
| 20 mm |
1419 Gs
141.9 mT
|
21.25 kg / 21248.1 g
208.4 N
|
miażdżący |
| 30 mm |
908 Gs
90.8 mT
|
8.70 kg / 8696.3 g
85.3 N
|
uwaga |
| 50 mm |
416 Gs
41.6 mT
|
1.83 kg / 1825.4 g
17.9 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 100x40x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
24.00 kg / 24002.0 g
235.5 N
|
| 1 mm | Stal (~0.2) |
22.54 kg / 22540.0 g
221.1 N
|
| 2 mm | Stal (~0.2) |
21.05 kg / 21054.0 g
206.5 N
|
| 3 mm | Stal (~0.2) |
19.58 kg / 19584.0 g
192.1 N
|
| 5 mm | Stal (~0.2) |
16.76 kg / 16756.0 g
164.4 N
|
| 10 mm | Stal (~0.2) |
10.83 kg / 10834.0 g
106.3 N
|
| 15 mm | Stal (~0.2) |
6.79 kg / 6792.0 g
66.6 N
|
| 20 mm | Stal (~0.2) |
4.25 kg / 4250.0 g
41.7 N
|
| 30 mm | Stal (~0.2) |
1.74 kg / 1740.0 g
17.1 N
|
| 50 mm | Stal (~0.2) |
0.37 kg / 366.0 g
3.6 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 100x40x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
36.00 kg / 36003.0 g
353.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
24.00 kg / 24002.0 g
235.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
12.00 kg / 12001.0 g
117.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
60.01 kg / 60005.0 g
588.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 100x40x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
4.00 kg / 4000.3 g
39.2 N
|
| 1 mm |
|
10.00 kg / 10000.8 g
98.1 N
|
| 2 mm |
|
20.00 kg / 20001.7 g
196.2 N
|
| 5 mm |
|
50.00 kg / 50004.2 g
490.5 N
|
| 10 mm |
|
100.01 kg / 100008.3 g
981.1 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 100x40x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
120.01 kg / 120010.0 g
1177.3 N
|
OK |
| 40 °C | -2.2% |
117.37 kg / 117369.8 g
1151.4 N
|
OK |
| 60 °C | -4.4% |
114.73 kg / 114729.6 g
1125.5 N
|
|
| 80 °C | -6.6% |
112.09 kg / 112089.3 g
1099.6 N
|
|
| 100 °C | -28.8% |
85.45 kg / 85447.1 g
838.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 100x40x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
280.40 kg / 280403 g
2750.8 N
4 790 Gs
|
N/A |
| 1 mm |
271.97 kg / 271970 g
2668.0 N
6 642 Gs
|
244.77 kg / 244773 g
2401.2 N
~0 Gs
|
| 2 mm |
263.31 kg / 263312 g
2583.1 N
6 535 Gs
|
236.98 kg / 236981 g
2324.8 N
~0 Gs
|
| 3 mm |
254.63 kg / 254635 g
2498.0 N
6 427 Gs
|
229.17 kg / 229171 g
2248.2 N
~0 Gs
|
| 5 mm |
237.35 kg / 237346 g
2328.4 N
6 205 Gs
|
213.61 kg / 213611 g
2095.5 N
~0 Gs
|
| 10 mm |
195.76 kg / 195759 g
1920.4 N
5 635 Gs
|
176.18 kg / 176183 g
1728.4 N
~0 Gs
|
| 20 mm |
126.58 kg / 126579 g
1241.7 N
4 531 Gs
|
113.92 kg / 113921 g
1117.6 N
~0 Gs
|
| 50 mm |
31.47 kg / 31470 g
308.7 N
2 259 Gs
|
28.32 kg / 28323 g
277.8 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 100x40x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 30.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 18.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 14.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 100x40x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.84 km/h
(4.96 m/s)
|
7.37 J | |
| 30 mm |
25.80 km/h
(7.17 m/s)
|
15.41 J | |
| 50 mm |
32.20 km/h
(8.94 m/s)
|
23.99 J | |
| 100 mm |
45.13 km/h
(12.54 m/s)
|
47.14 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 100x40x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 100x40x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 131 922 Mx | 1319.2 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 100x40x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 120.01 kg | Standard |
| Woda (dno rzeki) |
137.41 kg
(+17.40 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki powłoce (NiCuNi, złoto, Ag) mają estetyczny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Temperatura pracy
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Urządzenia elektroniczne
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od niepowołanych osób.
Rozprysk materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Łatwopalność
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kompas i GPS
Ważna informacja: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Siła neodymu
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
