MPL 3x3x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020148
GTIN/EAN: 5906301811541
Długość
3 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.2 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.34 kg / 3.37 N
Indukcja magnetyczna
538.48 mT / 5385 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość korzystając z
formularz kontaktowy
na stronie kontaktowej.
Udźwig i wygląd elementów magnetycznych wyliczysz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Parametry - MPL 3x3x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 3x3x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020148 |
| GTIN/EAN | 5906301811541 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 3 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.2 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.34 kg / 3.37 N |
| Indukcja magnetyczna ~ ? | 538.48 mT / 5385 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Poniższe wartości stanowią wynik symulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 3x3x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5372 Gs
537.2 mT
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
słaby uchwyt |
| 1 mm |
2530 Gs
253.0 mT
|
0.08 kg / 0.17 lbs
75.4 g / 0.7 N
|
słaby uchwyt |
| 2 mm |
1127 Gs
112.7 mT
|
0.01 kg / 0.03 lbs
15.0 g / 0.1 N
|
słaby uchwyt |
| 3 mm |
562 Gs
56.2 mT
|
0.00 kg / 0.01 lbs
3.7 g / 0.0 N
|
słaby uchwyt |
| 5 mm |
192 Gs
19.2 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
słaby uchwyt |
| 10 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 3x3x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 3x3x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 3x3x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 1 mm |
|
0.09 kg / 0.19 lbs
85.0 g / 0.8 N
|
| 2 mm |
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 3 mm |
|
0.26 kg / 0.56 lbs
255.0 g / 2.5 N
|
| 5 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 10 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 11 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 12 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 3x3x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
OK |
| 40 °C | -2.2% |
0.33 kg / 0.73 lbs
332.5 g / 3.3 N
|
OK |
| 60 °C | -4.4% |
0.33 kg / 0.72 lbs
325.0 g / 3.2 N
|
OK |
| 80 °C | -6.6% |
0.32 kg / 0.70 lbs
317.6 g / 3.1 N
|
|
| 100 °C | -28.8% |
0.24 kg / 0.53 lbs
242.1 g / 2.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 3x3x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.60 kg / 3.53 lbs
5 931 Gs
|
0.24 kg / 0.53 lbs
240 g / 2.4 N
|
N/A |
| 1 mm |
0.80 kg / 1.77 lbs
7 610 Gs
|
0.12 kg / 0.27 lbs
120 g / 1.2 N
|
0.72 kg / 1.59 lbs
~0 Gs
|
| 2 mm |
0.36 kg / 0.78 lbs
5 061 Gs
|
0.05 kg / 0.12 lbs
53 g / 0.5 N
|
0.32 kg / 0.70 lbs
~0 Gs
|
| 3 mm |
0.15 kg / 0.34 lbs
3 343 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 5 mm |
0.03 kg / 0.08 lbs
1 568 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
384 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
70 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 3x3x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 3x3x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
41.58 km/h
(11.55 m/s)
|
0.01 J | |
| 30 mm |
72.02 km/h
(20.01 m/s)
|
0.04 J | |
| 50 mm |
92.98 km/h
(25.83 m/s)
|
0.07 J | |
| 100 mm |
131.49 km/h
(36.53 m/s)
|
0.13 J |
Tabela 9: Odporność na korozję
MPL 3x3x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 3x3x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 495 Mx | 5.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 3x3x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.34 kg | Standard |
| Woda (dno rzeki) |
0.39 kg
(+0.05 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- o wypolerowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie ciała obcego (farba, brud, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Ostrzeżenia
Tylko dla dorosłych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Świadome użytkowanie
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Pył jest łatwopalny
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Nośniki danych
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Kompas i GPS
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Ochrona dłoni
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Nadwrażliwość na metale
Pewna grupa użytkowników posiada uczulenie na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Wskazane jest noszenie rękawiczek ochronnych.
