MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030200
GTIN/EAN: 5906301812173
Średnica
41 mm [±0,1 mm]
Średnica wewnętrzna Ø
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
85.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.44 kg / 239.78 N
Indukcja magnetyczna
271.77 mT / 2718 Gs
Powłoka
[NiCuNi] nikiel
50.00 ZŁ z VAT / szt. + cena za transport
40.65 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
formularz
na stronie kontaktowej.
Właściwości oraz formę magnesów neodymowych wyliczysz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne produktu - MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030200 |
| GTIN/EAN | 5906301812173 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 41 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 85.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.44 kg / 239.78 N |
| Indukcja magnetyczna ~ ? | 271.77 mT / 2718 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Niniejsze informacje są rezultat kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MP 41x15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5232 Gs
523.2 mT
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
krytyczny poziom |
| 1 mm |
4978 Gs
497.8 mT
|
22.12 kg / 48.77 lbs
22120.4 g / 217.0 N
|
krytyczny poziom |
| 2 mm |
4720 Gs
472.0 mT
|
19.89 kg / 43.85 lbs
19888.8 g / 195.1 N
|
krytyczny poziom |
| 3 mm |
4464 Gs
446.4 mT
|
17.79 kg / 39.22 lbs
17788.4 g / 174.5 N
|
krytyczny poziom |
| 5 mm |
3964 Gs
396.4 mT
|
14.03 kg / 30.93 lbs
14030.8 g / 137.6 N
|
krytyczny poziom |
| 10 mm |
2861 Gs
286.1 mT
|
7.31 kg / 16.11 lbs
7308.1 g / 71.7 N
|
mocny |
| 15 mm |
2028 Gs
202.8 mT
|
3.67 kg / 8.09 lbs
3670.1 g / 36.0 N
|
mocny |
| 20 mm |
1443 Gs
144.3 mT
|
1.86 kg / 4.10 lbs
1858.4 g / 18.2 N
|
niskie ryzyko |
| 30 mm |
770 Gs
77.0 mT
|
0.53 kg / 1.17 lbs
529.8 g / 5.2 N
|
niskie ryzyko |
| 50 mm |
280 Gs
28.0 mT
|
0.07 kg / 0.15 lbs
69.8 g / 0.7 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MP 41x15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.89 kg / 10.78 lbs
4888.0 g / 48.0 N
|
| 1 mm | Stal (~0.2) |
4.42 kg / 9.75 lbs
4424.0 g / 43.4 N
|
| 2 mm | Stal (~0.2) |
3.98 kg / 8.77 lbs
3978.0 g / 39.0 N
|
| 3 mm | Stal (~0.2) |
3.56 kg / 7.84 lbs
3558.0 g / 34.9 N
|
| 5 mm | Stal (~0.2) |
2.81 kg / 6.19 lbs
2806.0 g / 27.5 N
|
| 10 mm | Stal (~0.2) |
1.46 kg / 3.22 lbs
1462.0 g / 14.3 N
|
| 15 mm | Stal (~0.2) |
0.73 kg / 1.62 lbs
734.0 g / 7.2 N
|
| 20 mm | Stal (~0.2) |
0.37 kg / 0.82 lbs
372.0 g / 3.6 N
|
| 30 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 41x15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.33 kg / 16.16 lbs
7332.0 g / 71.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.89 kg / 10.78 lbs
4888.0 g / 48.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.44 kg / 5.39 lbs
2444.0 g / 24.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.22 kg / 26.94 lbs
12220.0 g / 119.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 41x15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.22 kg / 2.69 lbs
1222.0 g / 12.0 N
|
| 1 mm |
|
3.06 kg / 6.74 lbs
3055.0 g / 30.0 N
|
| 2 mm |
|
6.11 kg / 13.47 lbs
6110.0 g / 59.9 N
|
| 3 mm |
|
9.17 kg / 20.21 lbs
9165.0 g / 89.9 N
|
| 5 mm |
|
15.28 kg / 33.68 lbs
15275.0 g / 149.8 N
|
| 10 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
| 11 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
| 12 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 41x15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
OK |
| 40 °C | -2.2% |
23.90 kg / 52.70 lbs
23902.3 g / 234.5 N
|
OK |
| 60 °C | -4.4% |
23.36 kg / 51.51 lbs
23364.6 g / 229.2 N
|
OK |
| 80 °C | -6.6% |
22.83 kg / 50.32 lbs
22827.0 g / 223.9 N
|
|
| 100 °C | -28.8% |
17.40 kg / 38.36 lbs
17401.3 g / 170.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 41x15x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
178.13 kg / 392.71 lbs
5 907 Gs
|
26.72 kg / 58.91 lbs
26719 g / 262.1 N
|
N/A |
| 1 mm |
169.67 kg / 374.06 lbs
10 213 Gs
|
25.45 kg / 56.11 lbs
25451 g / 249.7 N
|
152.70 kg / 336.65 lbs
~0 Gs
|
| 2 mm |
161.22 kg / 355.43 lbs
9 955 Gs
|
24.18 kg / 53.32 lbs
24183 g / 237.2 N
|
145.10 kg / 319.89 lbs
~0 Gs
|
| 3 mm |
152.98 kg / 337.26 lbs
9 697 Gs
|
22.95 kg / 50.59 lbs
22947 g / 225.1 N
|
137.68 kg / 303.53 lbs
~0 Gs
|
| 5 mm |
137.18 kg / 302.42 lbs
9 183 Gs
|
20.58 kg / 45.36 lbs
20577 g / 201.9 N
|
123.46 kg / 272.18 lbs
~0 Gs
|
| 10 mm |
102.26 kg / 225.45 lbs
7 929 Gs
|
15.34 kg / 33.82 lbs
15339 g / 150.5 N
|
92.04 kg / 202.90 lbs
~0 Gs
|
| 20 mm |
53.26 kg / 117.43 lbs
5 722 Gs
|
7.99 kg / 17.61 lbs
7990 g / 78.4 N
|
47.94 kg / 105.69 lbs
~0 Gs
|
| 50 mm |
7.08 kg / 15.62 lbs
2 087 Gs
|
1.06 kg / 2.34 lbs
1063 g / 10.4 N
|
6.38 kg / 14.06 lbs
~0 Gs
|
| 60 mm |
3.86 kg / 8.51 lbs
1 541 Gs
|
0.58 kg / 1.28 lbs
579 g / 5.7 N
|
3.48 kg / 7.66 lbs
~0 Gs
|
| 70 mm |
2.20 kg / 4.84 lbs
1 162 Gs
|
0.33 kg / 0.73 lbs
330 g / 3.2 N
|
1.98 kg / 4.36 lbs
~0 Gs
|
| 80 mm |
1.30 kg / 2.87 lbs
895 Gs
|
0.20 kg / 0.43 lbs
195 g / 1.9 N
|
1.17 kg / 2.58 lbs
~0 Gs
|
| 90 mm |
0.80 kg / 1.76 lbs
701 Gs
|
0.12 kg / 0.26 lbs
120 g / 1.2 N
|
0.72 kg / 1.59 lbs
~0 Gs
|
| 100 mm |
0.51 kg / 1.12 lbs
559 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 41x15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 41x15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.95 km/h
(5.54 m/s)
|
1.32 J | |
| 30 mm |
29.88 km/h
(8.30 m/s)
|
2.96 J | |
| 50 mm |
38.13 km/h
(10.59 m/s)
|
4.81 J | |
| 100 mm |
53.84 km/h
(14.96 m/s)
|
9.59 J |
Tabela 9: Parametry powłoki (trwałość)
MP 41x15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 41x15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 505 Mx | 565.0 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 41x15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.44 kg | Standard |
| Woda (dno rzeki) |
27.98 kg
(+3.54 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- z powierzchnią idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Odstęp (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig wyznaczano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ryzyko pożaru
Pył generowany podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Elektronika precyzyjna
Uwaga: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Nadwrażliwość na metale
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Nie dawać dzieciom
Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Implanty kardiologiczne
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
