MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030195
GTIN/EAN: 5906301812128
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
7 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
30.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.82 kg / 145.39 N
Indukcja magnetyczna
362.13 mT / 3621 Gs
Powłoka
[NiCuNi] nikiel
12.55 ZŁ z VAT / szt. + cena za transport
10.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość za pomocą
formularz
na stronie kontakt.
Parametry a także formę magnesów neodymowych wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane produktu - MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030195 |
| GTIN/EAN | 5906301812128 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 30.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.82 kg / 145.39 N |
| Indukcja magnetyczna ~ ? | 362.13 mT / 3621 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Niniejsze dane stanowią bezpośredni efekt kalkulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 25x7x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
krytyczny poziom |
| 1 mm |
5310 Gs
531.0 mT
|
12.52 kg / 27.60 lbs
12519.6 g / 122.8 N
|
krytyczny poziom |
| 2 mm |
4846 Gs
484.6 mT
|
10.43 kg / 22.98 lbs
10425.5 g / 102.3 N
|
krytyczny poziom |
| 3 mm |
4397 Gs
439.7 mT
|
8.59 kg / 18.93 lbs
8586.1 g / 84.2 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
5.68 kg / 12.52 lbs
5678.0 g / 55.7 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
1.91 kg / 4.21 lbs
1907.5 g / 18.7 N
|
słaby uchwyt |
| 15 mm |
1231 Gs
123.1 mT
|
0.67 kg / 1.48 lbs
673.1 g / 6.6 N
|
słaby uchwyt |
| 20 mm |
773 Gs
77.3 mT
|
0.27 kg / 0.58 lbs
265.0 g / 2.6 N
|
słaby uchwyt |
| 30 mm |
356 Gs
35.6 mT
|
0.06 kg / 0.12 lbs
56.2 g / 0.6 N
|
słaby uchwyt |
| 50 mm |
115 Gs
11.5 mT
|
0.01 kg / 0.01 lbs
5.9 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 25x7x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.96 kg / 6.53 lbs
2964.0 g / 29.1 N
|
| 1 mm | Stal (~0.2) |
2.50 kg / 5.52 lbs
2504.0 g / 24.6 N
|
| 2 mm | Stal (~0.2) |
2.09 kg / 4.60 lbs
2086.0 g / 20.5 N
|
| 3 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1718.0 g / 16.9 N
|
| 5 mm | Stal (~0.2) |
1.14 kg / 2.50 lbs
1136.0 g / 11.1 N
|
| 10 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
382.0 g / 3.7 N
|
| 15 mm | Stal (~0.2) |
0.13 kg / 0.30 lbs
134.0 g / 1.3 N
|
| 20 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 25x7x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.45 kg / 9.80 lbs
4446.0 g / 43.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.96 kg / 6.53 lbs
2964.0 g / 29.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.48 kg / 3.27 lbs
1482.0 g / 14.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.41 kg / 16.34 lbs
7410.0 g / 72.7 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 25x7x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.63 lbs
741.0 g / 7.3 N
|
| 1 mm |
|
1.85 kg / 4.08 lbs
1852.5 g / 18.2 N
|
| 2 mm |
|
3.71 kg / 8.17 lbs
3705.0 g / 36.3 N
|
| 3 mm |
|
5.56 kg / 12.25 lbs
5557.5 g / 54.5 N
|
| 5 mm |
|
9.26 kg / 20.42 lbs
9262.5 g / 90.9 N
|
| 10 mm |
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
| 11 mm |
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
| 12 mm |
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MP 25x7x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
OK |
| 40 °C | -2.2% |
14.49 kg / 31.95 lbs
14494.0 g / 142.2 N
|
OK |
| 60 °C | -4.4% |
14.17 kg / 31.23 lbs
14167.9 g / 139.0 N
|
OK |
| 80 °C | -6.6% |
13.84 kg / 30.52 lbs
13841.9 g / 135.8 N
|
|
| 100 °C | -28.8% |
10.55 kg / 23.26 lbs
10551.8 g / 103.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 25x7x9 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
74.73 kg / 164.76 lbs
6 082 Gs
|
11.21 kg / 24.71 lbs
11210 g / 110.0 N
|
N/A |
| 1 mm |
68.86 kg / 151.81 lbs
11 091 Gs
|
10.33 kg / 22.77 lbs
10329 g / 101.3 N
|
61.97 kg / 136.63 lbs
~0 Gs
|
| 2 mm |
63.13 kg / 139.18 lbs
10 620 Gs
|
9.47 kg / 20.88 lbs
9470 g / 92.9 N
|
56.82 kg / 125.26 lbs
~0 Gs
|
| 3 mm |
57.70 kg / 127.20 lbs
10 153 Gs
|
8.65 kg / 19.08 lbs
8654 g / 84.9 N
|
51.93 kg / 114.48 lbs
~0 Gs
|
| 5 mm |
47.77 kg / 105.31 lbs
9 238 Gs
|
7.17 kg / 15.80 lbs
7165 g / 70.3 N
|
42.99 kg / 94.78 lbs
~0 Gs
|
| 10 mm |
28.63 kg / 63.12 lbs
7 152 Gs
|
4.29 kg / 9.47 lbs
4295 g / 42.1 N
|
25.77 kg / 56.81 lbs
~0 Gs
|
| 20 mm |
9.62 kg / 21.21 lbs
4 145 Gs
|
1.44 kg / 3.18 lbs
1443 g / 14.2 N
|
8.66 kg / 19.09 lbs
~0 Gs
|
| 50 mm |
0.59 kg / 1.29 lbs
1 024 Gs
|
0.09 kg / 0.19 lbs
88 g / 0.9 N
|
0.53 kg / 1.16 lbs
~0 Gs
|
| 60 mm |
0.28 kg / 0.62 lbs
712 Gs
|
0.04 kg / 0.09 lbs
43 g / 0.4 N
|
0.26 kg / 0.56 lbs
~0 Gs
|
| 70 mm |
0.15 kg / 0.33 lbs
514 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.18 lbs
383 Gs
|
0.01 kg / 0.03 lbs
12 g / 0.1 N
|
0.07 kg / 0.16 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
293 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 25x7x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 25x7x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.94 km/h
(6.65 m/s)
|
0.68 J | |
| 30 mm |
38.57 km/h
(10.71 m/s)
|
1.75 J | |
| 50 mm |
49.69 km/h
(13.80 m/s)
|
2.91 J | |
| 100 mm |
70.25 km/h
(19.52 m/s)
|
5.82 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 25x7x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 25x7x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 495 Mx | 225.0 µWb |
| Współczynnik Pc | 1.05 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 25x7x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.82 kg | Standard |
| Woda (dno rzeki) |
16.97 kg
(+2.15 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.05
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- której grubość wynosi ok. 10 mm
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Ostrzeżenia
Karty i dyski
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Ryzyko połknięcia
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Unikaj kontaktu w przypadku alergii
Niektóre osoby posiada alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może skutkować wysypkę. Sugerujemy stosowanie rękawic bezlateksowych.
Ostrożność wymagana
Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Poważne obrażenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Łatwopalność
Pył generowany podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
