MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030179
GTIN/EAN: 5906301811961
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
1.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.79 kg / 17.55 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie pisz korzystając z
formularz zapytania
w sekcji kontakt.
Właściwości oraz budowę magnesów neodymowych zobaczysz w naszym
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne produktu - MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030179 |
| GTIN/EAN | 5906301811961 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 1.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.79 kg / 17.55 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze dane stanowią rezultat kalkulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MP 10x6x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6115 Gs
611.5 mT
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
bezpieczny |
| 1 mm |
4915 Gs
491.5 mT
|
1.16 kg / 2.55 lbs
1156.7 g / 11.3 N
|
bezpieczny |
| 2 mm |
3833 Gs
383.3 mT
|
0.70 kg / 1.55 lbs
703.2 g / 6.9 N
|
bezpieczny |
| 3 mm |
2949 Gs
294.9 mT
|
0.42 kg / 0.92 lbs
416.3 g / 4.1 N
|
bezpieczny |
| 5 mm |
1761 Gs
176.1 mT
|
0.15 kg / 0.33 lbs
148.5 g / 1.5 N
|
bezpieczny |
| 10 mm |
612 Gs
61.2 mT
|
0.02 kg / 0.04 lbs
17.9 g / 0.2 N
|
bezpieczny |
| 15 mm |
284 Gs
28.4 mT
|
0.00 kg / 0.01 lbs
3.9 g / 0.0 N
|
bezpieczny |
| 20 mm |
157 Gs
15.7 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
bezpieczny |
| 30 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 10x6x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.36 kg / 0.79 lbs
358.0 g / 3.5 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| 2 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 10x6x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.54 kg / 1.18 lbs
537.0 g / 5.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.36 kg / 0.79 lbs
358.0 g / 3.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.18 kg / 0.39 lbs
179.0 g / 1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.90 kg / 1.97 lbs
895.0 g / 8.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 10x6x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.18 kg / 0.39 lbs
179.0 g / 1.8 N
|
| 1 mm |
|
0.45 kg / 0.99 lbs
447.5 g / 4.4 N
|
| 2 mm |
|
0.90 kg / 1.97 lbs
895.0 g / 8.8 N
|
| 3 mm |
|
1.34 kg / 2.96 lbs
1342.5 g / 13.2 N
|
| 5 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 10 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 11 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 12 mm |
|
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MP 10x6x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
OK |
| 40 °C | -2.2% |
1.75 kg / 3.86 lbs
1750.6 g / 17.2 N
|
OK |
| 60 °C | -4.4% |
1.71 kg / 3.77 lbs
1711.2 g / 16.8 N
|
OK |
| 80 °C | -6.6% |
1.67 kg / 3.69 lbs
1671.9 g / 16.4 N
|
|
| 100 °C | -28.8% |
1.27 kg / 2.81 lbs
1274.5 g / 12.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MP 10x6x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.93 kg / 28.50 lbs
6 169 Gs
|
1.94 kg / 4.27 lbs
1939 g / 19.0 N
|
N/A |
| 1 mm |
10.50 kg / 23.16 lbs
11 025 Gs
|
1.58 kg / 3.47 lbs
1576 g / 15.5 N
|
9.45 kg / 20.84 lbs
~0 Gs
|
| 2 mm |
8.35 kg / 18.41 lbs
9 831 Gs
|
1.25 kg / 2.76 lbs
1253 g / 12.3 N
|
7.52 kg / 16.57 lbs
~0 Gs
|
| 3 mm |
6.55 kg / 14.43 lbs
8 703 Gs
|
0.98 kg / 2.17 lbs
982 g / 9.6 N
|
5.89 kg / 12.99 lbs
~0 Gs
|
| 5 mm |
3.91 kg / 8.63 lbs
6 729 Gs
|
0.59 kg / 1.29 lbs
587 g / 5.8 N
|
3.52 kg / 7.76 lbs
~0 Gs
|
| 10 mm |
1.07 kg / 2.36 lbs
3 522 Gs
|
0.16 kg / 0.35 lbs
161 g / 1.6 N
|
0.96 kg / 2.13 lbs
~0 Gs
|
| 20 mm |
0.13 kg / 0.29 lbs
1 223 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
194 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
129 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
91 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
50 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 10x6x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MP 10x6x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.94 km/h
(9.71 m/s)
|
0.07 J | |
| 30 mm |
60.15 km/h
(16.71 m/s)
|
0.21 J | |
| 50 mm |
77.64 km/h
(21.57 m/s)
|
0.35 J | |
| 100 mm |
109.80 km/h
(30.50 m/s)
|
0.70 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 10x6x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 10x6x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 017 Mx | 40.2 µWb |
| Współczynnik Pc | 1.44 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 10x6x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.79 kg | Standard |
| Woda (dno rzeki) |
2.05 kg
(+0.26 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z zastosowaniem płyty ze stali niskowęglowej, działającej jako zwora magnetyczna
- o grubości przynajmniej 10 mm
- o szlifowanej powierzchni kontaktu
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie fizyczne
Duże magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Dla uczulonych
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Kompas i GPS
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zakaz zabawy
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Samozapłon
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
