MW 9.5x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010107
GTIN/EAN: 5906301811060
Średnica Ø
9.5 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.40 kg / 3.96 N
Indukcja magnetyczna
127.68 mT / 1277 Gs
Powłoka
[NiCuNi] nikiel
0.295 ZŁ z VAT / szt. + cena za transport
0.240 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie zostaw wiadomość poprzez
nasz formularz online
przez naszą stronę.
Parametry oraz kształt magnesów neodymowych zobaczysz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MW 9.5x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 9.5x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010107 |
| GTIN/EAN | 5906301811060 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 9.5 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.53 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.40 kg / 3.96 N |
| Indukcja magnetyczna ~ ? | 127.68 mT / 1277 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione informacje są bezpośredni efekt analizy fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 9.5x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1276 Gs
127.6 mT
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
niskie ryzyko |
| 1 mm |
1129 Gs
112.9 mT
|
0.31 kg / 0.69 lbs
312.8 g / 3.1 N
|
niskie ryzyko |
| 2 mm |
905 Gs
90.5 mT
|
0.20 kg / 0.44 lbs
201.0 g / 2.0 N
|
niskie ryzyko |
| 3 mm |
683 Gs
68.3 mT
|
0.11 kg / 0.25 lbs
114.5 g / 1.1 N
|
niskie ryzyko |
| 5 mm |
366 Gs
36.6 mT
|
0.03 kg / 0.07 lbs
32.9 g / 0.3 N
|
niskie ryzyko |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 9.5x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 9.5x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 9.5x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 1 mm |
|
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 2 mm |
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 3 mm |
|
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 5 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 10 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 11 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 12 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 9.5x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
OK |
| 40 °C | -2.2% |
0.39 kg / 0.86 lbs
391.2 g / 3.8 N
|
OK |
| 60 °C | -4.4% |
0.38 kg / 0.84 lbs
382.4 g / 3.8 N
|
|
| 80 °C | -6.6% |
0.37 kg / 0.82 lbs
373.6 g / 3.7 N
|
|
| 100 °C | -28.8% |
0.28 kg / 0.63 lbs
284.8 g / 2.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 9.5x1 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.71 kg / 1.57 lbs
2 403 Gs
|
0.11 kg / 0.24 lbs
107 g / 1.0 N
|
N/A |
| 1 mm |
0.65 kg / 1.43 lbs
2 436 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.29 lbs
~0 Gs
|
| 2 mm |
0.56 kg / 1.23 lbs
2 257 Gs
|
0.08 kg / 0.18 lbs
84 g / 0.8 N
|
0.50 kg / 1.10 lbs
~0 Gs
|
| 3 mm |
0.46 kg / 1.00 lbs
2 041 Gs
|
0.07 kg / 0.15 lbs
68 g / 0.7 N
|
0.41 kg / 0.90 lbs
~0 Gs
|
| 5 mm |
0.27 kg / 0.60 lbs
1 580 Gs
|
0.04 kg / 0.09 lbs
41 g / 0.4 N
|
0.25 kg / 0.54 lbs
~0 Gs
|
| 10 mm |
0.06 kg / 0.13 lbs
732 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
183 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 9.5x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 9.5x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.80 km/h
(7.72 m/s)
|
0.02 J | |
| 30 mm |
47.99 km/h
(13.33 m/s)
|
0.05 J | |
| 50 mm |
61.95 km/h
(17.21 m/s)
|
0.08 J | |
| 100 mm |
87.61 km/h
(24.34 m/s)
|
0.16 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 9.5x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 9.5x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 184 Mx | 11.8 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 9.5x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.40 kg | Standard |
| Woda (dno rzeki) |
0.46 kg
(+0.06 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi jedynie ~1% (wg testów).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność koercji.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy bezpośrednim styku (brak zanieczyszczeń)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet bardzo mała przerwa (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – za chuda płyta nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj z dala od niepowołanych osób.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Bezpieczny dystans
Unikaj zbliżania magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Nadwrażliwość na metale
Pewna grupa użytkowników posiada uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Rekomendujemy stosowanie rękawiczek ochronnych.
Rozruszniki serca
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Magnesy są kruche
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Świadome użytkowanie
Używaj magnesy świadomie. Ich ogromna siła może zszokować nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
