Magnesy neodymowe: siła, której szukasz

Szukasz ogromnej mocy w małym rozmiarze? Posiadamy w sprzedaży szeroki wybór magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do użytku w domu, warsztatu oraz modelarstwa. Zobacz produkty w naszym magazynie.

poznaj cennik i wymiary

Magnet fishing: solidne zestawy F200/F400

Odkryj pasję z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w trudnych warunkach wodnych.

wybierz swój magnes do wody

Mocowania magnetyczne dla przemysłu

Niezawodne rozwiązania do montażu bezinwazyjnego. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Są niezastąpione przy instalacji oświetlenia, sensorów oraz banerów.

zobacz parametry techniczne

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 9.5x1 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010107

GTIN/EAN: 5906301811060

5.00

Średnica Ø

9.5 mm [±0,1 mm]

Wysokość

1 mm [±0,1 mm]

Waga

0.53 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.40 kg / 3.96 N

Indukcja magnetyczna

127.68 mT / 1277 Gs

Powłoka

[NiCuNi] nikiel

0.295 z VAT / szt. + cena za transport

0.240 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.240 ZŁ
0.295 ZŁ
cena od 4000 szt.
0.216 ZŁ
0.266 ZŁ
cena od 8000 szt.
0.211 ZŁ
0.260 ZŁ
Nie wiesz co wybrać?

Dzwoń do nas +48 888 99 98 98 albo pisz poprzez formularz kontaktowy na naszej stronie.
Parametry a także formę magnesu neodymowego obliczysz w naszym kalkulatorze magnetycznym.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Szczegółowa specyfikacja MW 9.5x1 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 9.5x1 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010107
GTIN/EAN 5906301811060
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 9.5 mm [±0,1 mm]
Wysokość 1 mm [±0,1 mm]
Waga 0.53 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.40 kg / 3.96 N
Indukcja magnetyczna ~ ? 127.68 mT / 1277 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 9.5x1 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu neodymowego - raport

Przedstawione dane stanowią bezpośredni efekt kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 9.5x1 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1276 Gs
127.6 mT
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
niskie ryzyko
1 mm 1129 Gs
112.9 mT
0.31 kg / 0.69 lbs
312.8 g / 3.1 N
niskie ryzyko
2 mm 905 Gs
90.5 mT
0.20 kg / 0.44 lbs
201.0 g / 2.0 N
niskie ryzyko
3 mm 683 Gs
68.3 mT
0.11 kg / 0.25 lbs
114.5 g / 1.1 N
niskie ryzyko
5 mm 366 Gs
36.6 mT
0.03 kg / 0.07 lbs
32.9 g / 0.3 N
niskie ryzyko
10 mm 92 Gs
9.2 mT
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
niskie ryzyko
15 mm 33 Gs
3.3 mT
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
niskie ryzyko
20 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Siła równoległa ześlizgu (pion)
MW 9.5x1 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.08 kg / 0.18 lbs
80.0 g / 0.8 N
1 mm Stal (~0.2) 0.06 kg / 0.14 lbs
62.0 g / 0.6 N
2 mm Stal (~0.2) 0.04 kg / 0.09 lbs
40.0 g / 0.4 N
3 mm Stal (~0.2) 0.02 kg / 0.05 lbs
22.0 g / 0.2 N
5 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 9.5x1 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.20 kg / 0.44 lbs
200.0 g / 2.0 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 9.5x1 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
1 mm
25%
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
2 mm
50%
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
3 mm
75%
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
5 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
10 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
11 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
12 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 9.5x1 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.40 kg / 0.88 lbs
400.0 g / 3.9 N
OK
40 °C -2.2% 0.39 kg / 0.86 lbs
391.2 g / 3.8 N
OK
60 °C -4.4% 0.38 kg / 0.84 lbs
382.4 g / 3.8 N
80 °C -6.6% 0.37 kg / 0.82 lbs
373.6 g / 3.7 N
100 °C -28.8% 0.28 kg / 0.63 lbs
284.8 g / 2.8 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 9.5x1 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 0.71 kg / 1.57 lbs
2 403 Gs
0.11 kg / 0.24 lbs
107 g / 1.0 N
N/A
1 mm 0.65 kg / 1.43 lbs
2 436 Gs
0.10 kg / 0.21 lbs
97 g / 1.0 N
0.58 kg / 1.29 lbs
~0 Gs
2 mm 0.56 kg / 1.23 lbs
2 257 Gs
0.08 kg / 0.18 lbs
84 g / 0.8 N
0.50 kg / 1.10 lbs
~0 Gs
3 mm 0.46 kg / 1.00 lbs
2 041 Gs
0.07 kg / 0.15 lbs
68 g / 0.7 N
0.41 kg / 0.90 lbs
~0 Gs
5 mm 0.27 kg / 0.60 lbs
1 580 Gs
0.04 kg / 0.09 lbs
41 g / 0.4 N
0.25 kg / 0.54 lbs
~0 Gs
10 mm 0.06 kg / 0.13 lbs
732 Gs
0.01 kg / 0.02 lbs
9 g / 0.1 N
0.05 kg / 0.12 lbs
~0 Gs
20 mm 0.00 kg / 0.01 lbs
183 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 9.5x1 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Pilot do auta 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 9.5x1 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 27.80 km/h
(7.72 m/s)
0.02 J
30 mm 47.99 km/h
(13.33 m/s)
0.05 J
50 mm 61.95 km/h
(17.21 m/s)
0.08 J
100 mm 87.61 km/h
(24.34 m/s)
0.16 J

Tabela 9: Parametry powłoki (trwałość)
MW 9.5x1 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Flux)
MW 9.5x1 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 184 Mx 11.8 µWb
Współczynnik Pc 0.16 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 9.5x1 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.40 kg Standard
Woda (dno rzeki) 0.46 kg
(+0.06 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.

2. Wpływ grubości blachy

*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.

3. Stabilność termiczna

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010107-2026
Kalkulator miar
Udźwig magnesu

Indukcja magnetyczna

Inne produkty

Prezentowany produkt to wyjątkowo silny magnes w kształcie walca, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø9.5x1 mm gwarantuje najwyższą gęstość energii. Komponent MW 9.5x1 / N38 cechuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 0.40 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w typowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem znajduje zastosowanie w projektach DIY, zaawansowanej automatyce oraz szeroko pojętym przemyśle, służąc jako element pozycjonujący lub wykonawczy. Dzięki sile przyciągania 3.96 N przy wadze zaledwie 0.53 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na kruchość materiału NdFeB, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego precyzyjnego komponentu. Dla zapewnienia stabilności w automatyce, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy N38 są odpowiednie do 90% zastosowań w automatyce i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø9.5x1), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym sklepie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 9.5 mm i wysokość 1 mm. Wartość 3.96 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 0.53 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 1 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest najbardziej pożądany przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady i zalety magnesów z neodymu Nd2Fe14B.

Mocne strony

Warto zwrócić uwagę, że obok wysokiej siły, magnesy te cechują się następującymi zaletami:
  • Długowieczność to ich atut – po upływie dekady spadek mocy wynosi tylko ~1% (teoretycznie).
  • Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
  • Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
  • Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
  • Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.

Minusy

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
  • Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
  • Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Analiza siły trzymania

Siła oderwania magnesu w optymalnych warunkachco się na to składa?

Informacja o udźwigu została określona dla warunków idealnego styku, uwzględniającej:
  • na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
  • o przekroju nie mniejszej niż 10 mm
  • o szlifowanej powierzchni styku
  • w warunkach bezszczelinowych (metal do metalu)
  • przy pionowym wektorze siły (kąt 90 stopni)
  • w warunkach ok. 20°C

Co wpływa na udźwig w praktyce

Na realną siłę wpływają konkretne warunki, takie jak (od najważniejszych):
  • Dystans (pomiędzy magnesem a metalem), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
  • Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
  • Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
  • Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
  • Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.

Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje siłę trzymania.

Instrukcja bezpiecznej obsługi magnesów
Potężne pole

Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.

Siła zgniatająca

Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.

Ryzyko pęknięcia

Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.

Ryzyko połknięcia

Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.

Niklowa powłoka a alergia

Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.

Wrażliwość na ciepło

Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.

Kompas i GPS

Silne pole magnetyczne wpływa negatywnie na funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.

Urządzenia elektroniczne

Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).

Wpływ na zdrowie

Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.

Pył jest łatwopalny

Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.

Zagrożenie! Szukasz szczegółów? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98