MW 9.5x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010107
GTIN/EAN: 5906301811060
Średnica Ø
9.5 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.40 kg / 3.96 N
Indukcja magnetyczna
127.68 mT / 1277 Gs
Powłoka
[NiCuNi] nikiel
0.295 ZŁ z VAT / szt. + cena za transport
0.240 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo skontaktuj się przez
nasz formularz online
w sekcji kontakt.
Udźwig a także wygląd magnesu neodymowego skontrolujesz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne MW 9.5x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 9.5x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010107 |
| GTIN/EAN | 5906301811060 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 9.5 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.53 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.40 kg / 3.96 N |
| Indukcja magnetyczna ~ ? | 127.68 mT / 1277 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze informacje stanowią rezultat analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 9.5x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1276 Gs
127.6 mT
|
0.40 kg / 400.0 g
3.9 N
|
bezpieczny |
| 1 mm |
1129 Gs
112.9 mT
|
0.31 kg / 312.8 g
3.1 N
|
bezpieczny |
| 2 mm |
905 Gs
90.5 mT
|
0.20 kg / 201.0 g
2.0 N
|
bezpieczny |
| 3 mm |
683 Gs
68.3 mT
|
0.11 kg / 114.5 g
1.1 N
|
bezpieczny |
| 5 mm |
366 Gs
36.6 mT
|
0.03 kg / 32.9 g
0.3 N
|
bezpieczny |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 2.1 g
0.0 N
|
bezpieczny |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 9.5x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 62.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 9.5x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 120.0 g
1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 80.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 40.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.20 kg / 200.0 g
2.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 9.5x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 40.0 g
0.4 N
|
| 1 mm |
|
0.10 kg / 100.0 g
1.0 N
|
| 2 mm |
|
0.20 kg / 200.0 g
2.0 N
|
| 5 mm |
|
0.40 kg / 400.0 g
3.9 N
|
| 10 mm |
|
0.40 kg / 400.0 g
3.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 9.5x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.40 kg / 400.0 g
3.9 N
|
OK |
| 40 °C | -2.2% |
0.39 kg / 391.2 g
3.8 N
|
OK |
| 60 °C | -4.4% |
0.38 kg / 382.4 g
3.8 N
|
|
| 80 °C | -6.6% |
0.37 kg / 373.6 g
3.7 N
|
|
| 100 °C | -28.8% |
0.28 kg / 284.8 g
2.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 9.5x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.71 kg / 712 g
7.0 N
2 403 Gs
|
N/A |
| 1 mm |
0.65 kg / 648 g
6.4 N
2 436 Gs
|
0.58 kg / 583 g
5.7 N
~0 Gs
|
| 2 mm |
0.56 kg / 557 g
5.5 N
2 257 Gs
|
0.50 kg / 501 g
4.9 N
~0 Gs
|
| 3 mm |
0.46 kg / 455 g
4.5 N
2 041 Gs
|
0.41 kg / 410 g
4.0 N
~0 Gs
|
| 5 mm |
0.27 kg / 273 g
2.7 N
1 580 Gs
|
0.25 kg / 246 g
2.4 N
~0 Gs
|
| 10 mm |
0.06 kg / 59 g
0.6 N
732 Gs
|
0.05 kg / 53 g
0.5 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
183 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 9.5x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 9.5x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.80 km/h
(7.72 m/s)
|
0.02 J | |
| 30 mm |
47.99 km/h
(13.33 m/s)
|
0.05 J | |
| 50 mm |
61.95 km/h
(17.21 m/s)
|
0.08 J | |
| 100 mm |
87.61 km/h
(24.34 m/s)
|
0.16 J |
Tabela 9: Parametry powłoki (trwałość)
MW 9.5x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 9.5x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 184 Mx | 11.8 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 9.5x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.40 kg | Standard |
| Woda (dno rzeki) |
0.46 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (między magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – za chuda blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje nośność.
Bezpieczna praca przy magnesach neodymowych
Ochrona dłoni
Silne magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Siła neodymu
Używaj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Chronić przed dziećmi
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Ochrona urządzeń
Ekstremalne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Temperatura pracy
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Uczulenie na powłokę
Pewna grupa użytkowników ma alergię kontaktową na nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Rekomendujemy stosowanie rękawiczek ochronnych.
