MW 8x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010102
GTIN/EAN: 5906301811015
Średnica Ø
8 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
5.65 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.47 kg / 14.45 N
Indukcja magnetyczna
598.12 mT / 5981 Gs
Powłoka
[NiCuNi] nikiel
3.44 ZŁ z VAT / szt. + cena za transport
2.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo zostaw wiadomość poprzez
nasz formularz online
na naszej stronie.
Właściwości a także kształt magnesu sprawdzisz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja produktu - MW 8x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010102 |
| GTIN/EAN | 5906301811015 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 5.65 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.47 kg / 14.45 N |
| Indukcja magnetyczna ~ ? | 598.12 mT / 5981 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Niniejsze wartości są wynik symulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 8x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5975 Gs
597.5 mT
|
1.47 kg / 1470.0 g
14.4 N
|
niskie ryzyko |
| 1 mm |
4511 Gs
451.1 mT
|
0.84 kg / 837.8 g
8.2 N
|
niskie ryzyko |
| 2 mm |
3262 Gs
326.2 mT
|
0.44 kg / 438.2 g
4.3 N
|
niskie ryzyko |
| 3 mm |
2332 Gs
233.2 mT
|
0.22 kg / 224.0 g
2.2 N
|
niskie ryzyko |
| 5 mm |
1238 Gs
123.8 mT
|
0.06 kg / 63.1 g
0.6 N
|
niskie ryzyko |
| 10 mm |
366 Gs
36.6 mT
|
0.01 kg / 5.5 g
0.1 N
|
niskie ryzyko |
| 15 mm |
155 Gs
15.5 mT
|
0.00 kg / 1.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
80 Gs
8.0 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 8x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.29 kg / 294.0 g
2.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 88.0 g
0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 8x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.44 kg / 441.0 g
4.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.29 kg / 294.0 g
2.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 147.0 g
1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.74 kg / 735.0 g
7.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 8x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 147.0 g
1.4 N
|
| 1 mm |
|
0.37 kg / 367.5 g
3.6 N
|
| 2 mm |
|
0.74 kg / 735.0 g
7.2 N
|
| 5 mm |
|
1.47 kg / 1470.0 g
14.4 N
|
| 10 mm |
|
1.47 kg / 1470.0 g
14.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 8x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.47 kg / 1470.0 g
14.4 N
|
OK |
| 40 °C | -2.2% |
1.44 kg / 1437.7 g
14.1 N
|
OK |
| 60 °C | -4.4% |
1.41 kg / 1405.3 g
13.8 N
|
OK |
| 80 °C | -6.6% |
1.37 kg / 1373.0 g
13.5 N
|
|
| 100 °C | -28.8% |
1.05 kg / 1046.6 g
10.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 8x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
11.06 kg / 11065 g
108.5 N
6 130 Gs
|
N/A |
| 1 mm |
8.49 kg / 8490 g
83.3 N
10 469 Gs
|
7.64 kg / 7641 g
75.0 N
~0 Gs
|
| 2 mm |
6.31 kg / 6306 g
61.9 N
9 022 Gs
|
5.68 kg / 5676 g
55.7 N
~0 Gs
|
| 3 mm |
4.59 kg / 4590 g
45.0 N
7 697 Gs
|
4.13 kg / 4131 g
40.5 N
~0 Gs
|
| 5 mm |
2.36 kg / 2357 g
23.1 N
5 516 Gs
|
2.12 kg / 2122 g
20.8 N
~0 Gs
|
| 10 mm |
0.48 kg / 475 g
4.7 N
2 476 Gs
|
0.43 kg / 428 g
4.2 N
~0 Gs
|
| 20 mm |
0.04 kg / 41 g
0.4 N
731 Gs
|
0.04 kg / 37 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
94 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 8x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 8x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.31 km/h
(4.53 m/s)
|
0.06 J | |
| 30 mm |
28.18 km/h
(7.83 m/s)
|
0.17 J | |
| 50 mm |
36.37 km/h
(10.10 m/s)
|
0.29 J | |
| 100 mm |
51.44 km/h
(14.29 m/s)
|
0.58 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 8x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 8x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 306 Mx | 33.1 µWb |
| Współczynnik Pc | 1.19 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 8x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.47 kg | Standard |
| Woda (dno rzeki) |
1.68 kg
(+0.21 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
BHP przy magnesach
Pole magnetyczne a elektronika
Bardzo silne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Tylko dla dorosłych
Neodymowe magnesy nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Limity termiczne
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Smartfony i tablety
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Ostrzeżenie dla sercowców
Osoby z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Moc przyciągania
Używaj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Niebezpieczeństwo przytrzaśnięcia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Zakaz obróbki
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Magnesy są kruche
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
