MW 70x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010096
GTIN/EAN: 5906301810957
Średnica Ø
70 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
865.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
144.18 kg / 1414.37 N
Indukcja magnetyczna
403.43 mT / 4034 Gs
Powłoka
[NiCuNi] nikiel
317.17 ZŁ z VAT / szt. + cena za transport
257.86 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo daj znać przez
formularz zapytania
w sekcji kontakt.
Moc oraz budowę magnesów wyliczysz dzięki naszemu
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 70x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010096 |
| GTIN/EAN | 5906301810957 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 865.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 144.18 kg / 1414.37 N |
| Indukcja magnetyczna ~ ? | 403.43 mT / 4034 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Poniższe dane są bezpośredni efekt analizy matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 70x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4034 Gs
403.4 mT
|
144.18 kg / 317.86 lbs
144180.0 g / 1414.4 N
|
krytyczny poziom |
| 1 mm |
3934 Gs
393.4 mT
|
137.11 kg / 302.27 lbs
137108.9 g / 1345.0 N
|
krytyczny poziom |
| 2 mm |
3830 Gs
383.0 mT
|
129.96 kg / 286.52 lbs
129962.6 g / 1274.9 N
|
krytyczny poziom |
| 3 mm |
3724 Gs
372.4 mT
|
122.86 kg / 270.87 lbs
122863.7 g / 1205.3 N
|
krytyczny poziom |
| 5 mm |
3507 Gs
350.7 mT
|
108.99 kg / 240.28 lbs
108989.8 g / 1069.2 N
|
krytyczny poziom |
| 10 mm |
2963 Gs
296.3 mT
|
77.77 kg / 171.46 lbs
77773.1 g / 763.0 N
|
krytyczny poziom |
| 15 mm |
2452 Gs
245.2 mT
|
53.26 kg / 117.41 lbs
53257.6 g / 522.5 N
|
krytyczny poziom |
| 20 mm |
2003 Gs
200.3 mT
|
35.55 kg / 78.38 lbs
35554.2 g / 348.8 N
|
krytyczny poziom |
| 30 mm |
1321 Gs
132.1 mT
|
15.45 kg / 34.06 lbs
15450.6 g / 151.6 N
|
krytyczny poziom |
| 50 mm |
601 Gs
60.1 mT
|
3.20 kg / 7.05 lbs
3199.7 g / 31.4 N
|
średnie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 70x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
28.84 kg / 63.57 lbs
28836.0 g / 282.9 N
|
| 1 mm | Stal (~0.2) |
27.42 kg / 60.46 lbs
27422.0 g / 269.0 N
|
| 2 mm | Stal (~0.2) |
25.99 kg / 57.30 lbs
25992.0 g / 255.0 N
|
| 3 mm | Stal (~0.2) |
24.57 kg / 54.17 lbs
24572.0 g / 241.1 N
|
| 5 mm | Stal (~0.2) |
21.80 kg / 48.06 lbs
21798.0 g / 213.8 N
|
| 10 mm | Stal (~0.2) |
15.55 kg / 34.29 lbs
15554.0 g / 152.6 N
|
| 15 mm | Stal (~0.2) |
10.65 kg / 23.48 lbs
10652.0 g / 104.5 N
|
| 20 mm | Stal (~0.2) |
7.11 kg / 15.67 lbs
7110.0 g / 69.7 N
|
| 30 mm | Stal (~0.2) |
3.09 kg / 6.81 lbs
3090.0 g / 30.3 N
|
| 50 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
640.0 g / 6.3 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 70x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
43.25 kg / 95.36 lbs
43254.0 g / 424.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
28.84 kg / 63.57 lbs
28836.0 g / 282.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
14.42 kg / 31.79 lbs
14418.0 g / 141.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
72.09 kg / 158.93 lbs
72090.0 g / 707.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 70x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
4.81 kg / 10.60 lbs
4806.0 g / 47.1 N
|
| 1 mm |
|
12.01 kg / 26.49 lbs
12015.0 g / 117.9 N
|
| 2 mm |
|
24.03 kg / 52.98 lbs
24030.0 g / 235.7 N
|
| 3 mm |
|
36.05 kg / 79.47 lbs
36045.0 g / 353.6 N
|
| 5 mm |
|
60.08 kg / 132.44 lbs
60075.0 g / 589.3 N
|
| 10 mm |
|
120.15 kg / 264.89 lbs
120150.0 g / 1178.7 N
|
| 11 mm |
|
132.17 kg / 291.37 lbs
132165.0 g / 1296.5 N
|
| 12 mm |
|
144.18 kg / 317.86 lbs
144180.0 g / 1414.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 70x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
144.18 kg / 317.86 lbs
144180.0 g / 1414.4 N
|
OK |
| 40 °C | -2.2% |
141.01 kg / 310.87 lbs
141008.0 g / 1383.3 N
|
OK |
| 60 °C | -4.4% |
137.84 kg / 303.88 lbs
137836.1 g / 1352.2 N
|
|
| 80 °C | -6.6% |
134.66 kg / 296.88 lbs
134664.1 g / 1321.1 N
|
|
| 100 °C | -28.8% |
102.66 kg / 226.32 lbs
102656.2 g / 1007.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 70x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
386.08 kg / 851.15 lbs
5 354 Gs
|
57.91 kg / 127.67 lbs
57911 g / 568.1 N
|
N/A |
| 1 mm |
376.71 kg / 830.51 lbs
7 969 Gs
|
56.51 kg / 124.58 lbs
56507 g / 554.3 N
|
339.04 kg / 747.46 lbs
~0 Gs
|
| 2 mm |
367.14 kg / 809.41 lbs
7 867 Gs
|
55.07 kg / 121.41 lbs
55071 g / 540.2 N
|
330.43 kg / 728.47 lbs
~0 Gs
|
| 3 mm |
357.57 kg / 788.30 lbs
7 764 Gs
|
53.63 kg / 118.24 lbs
53635 g / 526.2 N
|
321.81 kg / 709.47 lbs
~0 Gs
|
| 5 mm |
338.48 kg / 746.21 lbs
7 554 Gs
|
50.77 kg / 111.93 lbs
50772 g / 498.1 N
|
304.63 kg / 671.59 lbs
~0 Gs
|
| 10 mm |
291.85 kg / 643.41 lbs
7 014 Gs
|
43.78 kg / 96.51 lbs
43777 g / 429.5 N
|
262.66 kg / 579.07 lbs
~0 Gs
|
| 20 mm |
208.26 kg / 459.13 lbs
5 925 Gs
|
31.24 kg / 68.87 lbs
31238 g / 306.4 N
|
187.43 kg / 413.21 lbs
~0 Gs
|
| 50 mm |
62.81 kg / 138.47 lbs
3 254 Gs
|
9.42 kg / 20.77 lbs
9421 g / 92.4 N
|
56.53 kg / 124.62 lbs
~0 Gs
|
| 60 mm |
41.37 kg / 91.21 lbs
2 641 Gs
|
6.21 kg / 13.68 lbs
6206 g / 60.9 N
|
37.24 kg / 82.09 lbs
~0 Gs
|
| 70 mm |
27.41 kg / 60.43 lbs
2 150 Gs
|
4.11 kg / 9.06 lbs
4112 g / 40.3 N
|
24.67 kg / 54.39 lbs
~0 Gs
|
| 80 mm |
18.35 kg / 40.46 lbs
1 759 Gs
|
2.75 kg / 6.07 lbs
2753 g / 27.0 N
|
16.52 kg / 36.41 lbs
~0 Gs
|
| 90 mm |
12.45 kg / 27.44 lbs
1 449 Gs
|
1.87 kg / 4.12 lbs
1867 g / 18.3 N
|
11.20 kg / 24.70 lbs
~0 Gs
|
| 100 mm |
8.57 kg / 18.89 lbs
1 202 Gs
|
1.29 kg / 2.83 lbs
1285 g / 12.6 N
|
7.71 kg / 17.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 70x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 34.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 27.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 21.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 16.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 15.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 70x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.84 km/h
(4.68 m/s)
|
9.47 J | |
| 30 mm |
24.00 km/h
(6.67 m/s)
|
19.25 J | |
| 50 mm |
29.50 km/h
(8.19 m/s)
|
29.07 J | |
| 100 mm |
41.18 km/h
(11.44 m/s)
|
56.66 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 70x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 70x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 159 225 Mx | 1592.3 µWb |
| Współczynnik Pc | 0.53 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 70x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 144.18 kg | Standard |
| Woda (dno rzeki) |
165.09 kg
(+20.91 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.53
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi jedynie ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- z zastosowaniem blachy ze miękkiej stali, która służy jako idealny przewodnik strumienia
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w neutralnych warunkach termicznych
Determinanty praktycznego udźwigu magnesu
- Dystans – obecność ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Nie przegrzewaj magnesów
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Bezpieczna praca
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Uwaga medyczna
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Zagrożenie dla najmłodszych
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ochrona urządzeń
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Podatność na pękanie
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Reakcje alergiczne
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Siła zgniatająca
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Obróbka mechaniczna
Proszek powstający podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
