MW 70x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010096
GTIN/EAN: 5906301810957
Średnica Ø
70 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
865.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
144.18 kg / 1414.37 N
Indukcja magnetyczna
403.43 mT / 4034 Gs
Powłoka
[NiCuNi] nikiel
317.17 ZŁ z VAT / szt. + cena za transport
257.86 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie daj znać korzystając z
formularz kontaktowy
w sekcji kontakt.
Parametry oraz formę magnesu neodymowego skontrolujesz w naszym
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 70x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010096 |
| GTIN/EAN | 5906301810957 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 865.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 144.18 kg / 1414.37 N |
| Indukcja magnetyczna ~ ? | 403.43 mT / 4034 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione dane stanowią bezpośredni efekt symulacji fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą się różnić. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 70x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4034 Gs
403.4 mT
|
144.18 kg / 317.86 lbs
144180.0 g / 1414.4 N
|
krytyczny poziom |
| 1 mm |
3934 Gs
393.4 mT
|
137.11 kg / 302.27 lbs
137108.9 g / 1345.0 N
|
krytyczny poziom |
| 2 mm |
3830 Gs
383.0 mT
|
129.96 kg / 286.52 lbs
129962.6 g / 1274.9 N
|
krytyczny poziom |
| 3 mm |
3724 Gs
372.4 mT
|
122.86 kg / 270.87 lbs
122863.7 g / 1205.3 N
|
krytyczny poziom |
| 5 mm |
3507 Gs
350.7 mT
|
108.99 kg / 240.28 lbs
108989.8 g / 1069.2 N
|
krytyczny poziom |
| 10 mm |
2963 Gs
296.3 mT
|
77.77 kg / 171.46 lbs
77773.1 g / 763.0 N
|
krytyczny poziom |
| 15 mm |
2452 Gs
245.2 mT
|
53.26 kg / 117.41 lbs
53257.6 g / 522.5 N
|
krytyczny poziom |
| 20 mm |
2003 Gs
200.3 mT
|
35.55 kg / 78.38 lbs
35554.2 g / 348.8 N
|
krytyczny poziom |
| 30 mm |
1321 Gs
132.1 mT
|
15.45 kg / 34.06 lbs
15450.6 g / 151.6 N
|
krytyczny poziom |
| 50 mm |
601 Gs
60.1 mT
|
3.20 kg / 7.05 lbs
3199.7 g / 31.4 N
|
średnie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 70x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
28.84 kg / 63.57 lbs
28836.0 g / 282.9 N
|
| 1 mm | Stal (~0.2) |
27.42 kg / 60.46 lbs
27422.0 g / 269.0 N
|
| 2 mm | Stal (~0.2) |
25.99 kg / 57.30 lbs
25992.0 g / 255.0 N
|
| 3 mm | Stal (~0.2) |
24.57 kg / 54.17 lbs
24572.0 g / 241.1 N
|
| 5 mm | Stal (~0.2) |
21.80 kg / 48.06 lbs
21798.0 g / 213.8 N
|
| 10 mm | Stal (~0.2) |
15.55 kg / 34.29 lbs
15554.0 g / 152.6 N
|
| 15 mm | Stal (~0.2) |
10.65 kg / 23.48 lbs
10652.0 g / 104.5 N
|
| 20 mm | Stal (~0.2) |
7.11 kg / 15.67 lbs
7110.0 g / 69.7 N
|
| 30 mm | Stal (~0.2) |
3.09 kg / 6.81 lbs
3090.0 g / 30.3 N
|
| 50 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
640.0 g / 6.3 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 70x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
43.25 kg / 95.36 lbs
43254.0 g / 424.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
28.84 kg / 63.57 lbs
28836.0 g / 282.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
14.42 kg / 31.79 lbs
14418.0 g / 141.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
72.09 kg / 158.93 lbs
72090.0 g / 707.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 70x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
4.81 kg / 10.60 lbs
4806.0 g / 47.1 N
|
| 1 mm |
|
12.01 kg / 26.49 lbs
12015.0 g / 117.9 N
|
| 2 mm |
|
24.03 kg / 52.98 lbs
24030.0 g / 235.7 N
|
| 3 mm |
|
36.05 kg / 79.47 lbs
36045.0 g / 353.6 N
|
| 5 mm |
|
60.08 kg / 132.44 lbs
60075.0 g / 589.3 N
|
| 10 mm |
|
120.15 kg / 264.89 lbs
120150.0 g / 1178.7 N
|
| 11 mm |
|
132.17 kg / 291.37 lbs
132165.0 g / 1296.5 N
|
| 12 mm |
|
144.18 kg / 317.86 lbs
144180.0 g / 1414.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 70x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
144.18 kg / 317.86 lbs
144180.0 g / 1414.4 N
|
OK |
| 40 °C | -2.2% |
141.01 kg / 310.87 lbs
141008.0 g / 1383.3 N
|
OK |
| 60 °C | -4.4% |
137.84 kg / 303.88 lbs
137836.1 g / 1352.2 N
|
|
| 80 °C | -6.6% |
134.66 kg / 296.88 lbs
134664.1 g / 1321.1 N
|
|
| 100 °C | -28.8% |
102.66 kg / 226.32 lbs
102656.2 g / 1007.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 70x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
386.08 kg / 851.15 lbs
5 354 Gs
|
57.91 kg / 127.67 lbs
57911 g / 568.1 N
|
N/A |
| 1 mm |
376.71 kg / 830.51 lbs
7 969 Gs
|
56.51 kg / 124.58 lbs
56507 g / 554.3 N
|
339.04 kg / 747.46 lbs
~0 Gs
|
| 2 mm |
367.14 kg / 809.41 lbs
7 867 Gs
|
55.07 kg / 121.41 lbs
55071 g / 540.2 N
|
330.43 kg / 728.47 lbs
~0 Gs
|
| 3 mm |
357.57 kg / 788.30 lbs
7 764 Gs
|
53.63 kg / 118.24 lbs
53635 g / 526.2 N
|
321.81 kg / 709.47 lbs
~0 Gs
|
| 5 mm |
338.48 kg / 746.21 lbs
7 554 Gs
|
50.77 kg / 111.93 lbs
50772 g / 498.1 N
|
304.63 kg / 671.59 lbs
~0 Gs
|
| 10 mm |
291.85 kg / 643.41 lbs
7 014 Gs
|
43.78 kg / 96.51 lbs
43777 g / 429.5 N
|
262.66 kg / 579.07 lbs
~0 Gs
|
| 20 mm |
208.26 kg / 459.13 lbs
5 925 Gs
|
31.24 kg / 68.87 lbs
31238 g / 306.4 N
|
187.43 kg / 413.21 lbs
~0 Gs
|
| 50 mm |
62.81 kg / 138.47 lbs
3 254 Gs
|
9.42 kg / 20.77 lbs
9421 g / 92.4 N
|
56.53 kg / 124.62 lbs
~0 Gs
|
| 60 mm |
41.37 kg / 91.21 lbs
2 641 Gs
|
6.21 kg / 13.68 lbs
6206 g / 60.9 N
|
37.24 kg / 82.09 lbs
~0 Gs
|
| 70 mm |
27.41 kg / 60.43 lbs
2 150 Gs
|
4.11 kg / 9.06 lbs
4112 g / 40.3 N
|
24.67 kg / 54.39 lbs
~0 Gs
|
| 80 mm |
18.35 kg / 40.46 lbs
1 759 Gs
|
2.75 kg / 6.07 lbs
2753 g / 27.0 N
|
16.52 kg / 36.41 lbs
~0 Gs
|
| 90 mm |
12.45 kg / 27.44 lbs
1 449 Gs
|
1.87 kg / 4.12 lbs
1867 g / 18.3 N
|
11.20 kg / 24.70 lbs
~0 Gs
|
| 100 mm |
8.57 kg / 18.89 lbs
1 202 Gs
|
1.29 kg / 2.83 lbs
1285 g / 12.6 N
|
7.71 kg / 17.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 70x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 34.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 27.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 21.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 16.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 15.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 70x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.84 km/h
(4.68 m/s)
|
9.47 J | |
| 30 mm |
24.00 km/h
(6.67 m/s)
|
19.25 J | |
| 50 mm |
29.50 km/h
(8.19 m/s)
|
29.07 J | |
| 100 mm |
41.18 km/h
(11.44 m/s)
|
56.66 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 70x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 70x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 159 225 Mx | 1592.3 µWb |
| Współczynnik Pc | 0.53 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 70x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 144.18 kg | Standard |
| Woda (dno rzeki) |
165.09 kg
(+20.91 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.53
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Najwyższa nośność magnesu – co ma na to wpływ?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża nośność.
BHP przy magnesach
Limity termiczne
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Pole magnetyczne a elektronika
Bardzo silne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Bezpieczna praca
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Ryzyko pęknięcia
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Unikaj kontaktu w przypadku alergii
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
