SM 19x225 [2xM6] / N50 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130241
GTIN/EAN: 5906301812708
Średnica Ø
19 mm [±1 mm]
Wysokość
225 mm [±1 mm]
Waga
0.01 g
Strumień magnetyczny
~ 12 000 Gauss [±5%]
492.00 ZŁ z VAT / szt. + cena za transport
400.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie skontaktuj się za pomocą
formularz
na stronie kontaktowej.
Parametry oraz kształt elementów magnetycznych skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja SM 19x225 [2xM6] / N50 - separator magnetyczny
Specyfikacja / charakterystyka - SM 19x225 [2xM6] / N50 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130241 |
| GTIN/EAN | 5906301812708 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 19 mm [±1 mm] |
| Wysokość | 225 mm [±1 mm] |
| Waga | 0.01 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 12 000 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM6 |
| Biegunowość | obwodowa - 12 nabiegunników |
| Grubość rury osłonowej | 0.5 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N50
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 14-14.6 | kGs |
| remanencja Br [min. - maks.] ? | 1400-1460 | mT |
| koercja bHc ? | 10.8-12.5 | kOe |
| koercja bHc ? | 860-995 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 47-51 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 374-406 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Tabela 1: Konstrukcja wałka
SM 19x225 [2xM6] / N50
| Parametr | Wartość | Opis / Jednostka |
|---|---|---|
| Średnica (Ø) | 19 | mm |
| Długość całkowita | 225 | mm (L) |
| Długość aktywna | 189 | mm |
| Liczba sekcji | 8 | modułów |
| Strefa martwa | 36 | mm (2x 18mm starter) |
| Waga (szacowana) | ~485 | g |
| Pow. aktywna | 113 | cm² (Area) |
| Materiał obudowy | AISI 304 | 1.4301 (Inox) |
| Wykończenie | Ra < 0.8 µm | Polerowane |
| Klasa temp. | 80°C | Standard (N) |
| Spadek siły (przy max °C) | -12.8% | Strata odwracalna (fizyka) |
| Siła (obliczona) | 6.1 | kg (teoret.) |
| Indukcja (pow.) | ~6 500 | Gauss (Max) |
Wykres 2: Profil pola (8 sekcji)
Wykres 3: Wydajność temperaturowa
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z wykorzystaniem płyty ze stali niskowęglowej, działającej jako element zamykający obwód
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa między magnesem, a blachą redukuje udźwig.
Ostrzeżenia
Ryzyko połknięcia
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Kruchość materiału
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Ochrona dłoni
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Reakcje alergiczne
Niektóre osoby ma uczulenie na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może powodować wysypkę. Rekomendujemy stosowanie rękawiczek ochronnych.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Interferencja magnetyczna
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Zagrożenie wybuchem pyłu
Proszek generowany podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Potężne pole
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Zagrożenie dla elektroniki
Nie przykładaj magnesów do portfela, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
