MW 6x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010094
GTIN/EAN: 5906301810933
Średnica Ø
6 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
1.27 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.14 kg / 11.18 N
Indukcja magnetyczna
553.38 mT / 5534 Gs
Powłoka
[NiCuNi] nikiel
0.677 ZŁ z VAT / szt. + cena za transport
0.550 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo pisz za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Właściwości a także budowę magnesu neodymowego obliczysz w naszym
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 6x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 6x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010094 |
| GTIN/EAN | 5906301810933 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 6 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 1.27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.14 kg / 11.18 N |
| Indukcja magnetyczna ~ ? | 553.38 mT / 5534 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Niniejsze dane stanowią rezultat kalkulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 6x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5527 Gs
552.7 mT
|
1.14 kg / 2.51 lbs
1140.0 g / 11.2 N
|
niskie ryzyko |
| 1 mm |
3738 Gs
373.8 mT
|
0.52 kg / 1.15 lbs
521.5 g / 5.1 N
|
niskie ryzyko |
| 2 mm |
2366 Gs
236.6 mT
|
0.21 kg / 0.46 lbs
209.0 g / 2.0 N
|
niskie ryzyko |
| 3 mm |
1498 Gs
149.8 mT
|
0.08 kg / 0.18 lbs
83.7 g / 0.8 N
|
niskie ryzyko |
| 5 mm |
665 Gs
66.5 mT
|
0.02 kg / 0.04 lbs
16.5 g / 0.2 N
|
niskie ryzyko |
| 10 mm |
155 Gs
15.5 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 6x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.23 kg / 0.50 lbs
228.0 g / 2.2 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 6x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.34 kg / 0.75 lbs
342.0 g / 3.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.23 kg / 0.50 lbs
228.0 g / 2.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.57 kg / 1.26 lbs
570.0 g / 5.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 6x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
| 1 mm |
|
0.29 kg / 0.63 lbs
285.0 g / 2.8 N
|
| 2 mm |
|
0.57 kg / 1.26 lbs
570.0 g / 5.6 N
|
| 3 mm |
|
0.86 kg / 1.88 lbs
855.0 g / 8.4 N
|
| 5 mm |
|
1.14 kg / 2.51 lbs
1140.0 g / 11.2 N
|
| 10 mm |
|
1.14 kg / 2.51 lbs
1140.0 g / 11.2 N
|
| 11 mm |
|
1.14 kg / 2.51 lbs
1140.0 g / 11.2 N
|
| 12 mm |
|
1.14 kg / 2.51 lbs
1140.0 g / 11.2 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 6x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.14 kg / 2.51 lbs
1140.0 g / 11.2 N
|
OK |
| 40 °C | -2.2% |
1.11 kg / 2.46 lbs
1114.9 g / 10.9 N
|
OK |
| 60 °C | -4.4% |
1.09 kg / 2.40 lbs
1089.8 g / 10.7 N
|
OK |
| 80 °C | -6.6% |
1.06 kg / 2.35 lbs
1064.8 g / 10.4 N
|
|
| 100 °C | -28.8% |
0.81 kg / 1.79 lbs
811.7 g / 8.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 6x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.32 kg / 11.74 lbs
5 995 Gs
|
0.80 kg / 1.76 lbs
799 g / 7.8 N
|
N/A |
| 1 mm |
3.70 kg / 8.17 lbs
9 220 Gs
|
0.56 kg / 1.23 lbs
556 g / 5.5 N
|
3.33 kg / 7.35 lbs
~0 Gs
|
| 2 mm |
2.44 kg / 5.37 lbs
7 476 Gs
|
0.37 kg / 0.81 lbs
365 g / 3.6 N
|
2.19 kg / 4.83 lbs
~0 Gs
|
| 3 mm |
1.55 kg / 3.42 lbs
5 968 Gs
|
0.23 kg / 0.51 lbs
233 g / 2.3 N
|
1.40 kg / 3.08 lbs
~0 Gs
|
| 5 mm |
0.61 kg / 1.35 lbs
3 755 Gs
|
0.09 kg / 0.20 lbs
92 g / 0.9 N
|
0.55 kg / 1.22 lbs
~0 Gs
|
| 10 mm |
0.08 kg / 0.17 lbs
1 330 Gs
|
0.01 kg / 0.03 lbs
12 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
311 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 6x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 6x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.23 km/h
(8.40 m/s)
|
0.04 J | |
| 30 mm |
52.34 km/h
(14.54 m/s)
|
0.13 J | |
| 50 mm |
67.56 km/h
(18.77 m/s)
|
0.22 J | |
| 100 mm |
95.55 km/h
(26.54 m/s)
|
0.45 J |
Tabela 9: Odporność na korozję
MW 6x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 6x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 613 Mx | 16.1 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 6x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.14 kg | Standard |
| Woda (dno rzeki) |
1.31 kg
(+0.17 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- z zastosowaniem płyty ze miękkiej stali, która służy jako zwora magnetyczna
- o grubości nie mniejszej niż 10 mm
- z powierzchnią idealnie równą
- przy zerowej szczelinie (bez zanieczyszczeń)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a metalem), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża siłę trzymania.
BHP przy magnesach
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Niklowa powłoka a alergia
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Zasady obsługi
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Trzymaj z dala od elektroniki
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Urządzenia elektroniczne
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
